A minimal residual method for a special class of linear systems with normal coefficients matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 1928-1937 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A minimal residual method is constructed for the class of linear systems with normal coefficient matrices whose spectra belong to algebraic curves of a low order $k$. From the well-known GMRES algorithm, the proposed method differs by the choice of the subspaces in which approximate solutions are sought; as a consequence, the latter method is described by a short-term recurrence. The case $k=2$ is discussed at length. Numerical results are presented that confirm the significant superiority of the proposed method over the GMRES as applied to the linear systems specified above.
@article{ZVMMF_2005_45_11_a2,
     author = {M. Dana and A. G. Zykov and Kh. D. Ikramov},
     title = {A minimal residual method for a special class of linear systems with normal coefficients matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1928--1937},
     year = {2005},
     volume = {45},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a2/}
}
TY  - JOUR
AU  - M. Dana
AU  - A. G. Zykov
AU  - Kh. D. Ikramov
TI  - A minimal residual method for a special class of linear systems with normal coefficients matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1928
EP  - 1937
VL  - 45
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a2/
LA  - ru
ID  - ZVMMF_2005_45_11_a2
ER  - 
%0 Journal Article
%A M. Dana
%A A. G. Zykov
%A Kh. D. Ikramov
%T A minimal residual method for a special class of linear systems with normal coefficients matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1928-1937
%V 45
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a2/
%G ru
%F ZVMMF_2005_45_11_a2
M. Dana; A. G. Zykov; Kh. D. Ikramov. A minimal residual method for a special class of linear systems with normal coefficients matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 1928-1937. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a2/

[1] Paige C. C., Saunders M. A., “Solution of sparse indefinite systems of linear equations”, SIAM J. Numer. Analys., 12 (1975), 617–629 | DOI | MR | Zbl

[2] Saad Y., Schultz M. H., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Statist. Comput., 7 (1986), 856–869 | DOI | MR | Zbl

[3] Elsner L., Ikramov Kh. D., “On a condensed form for normal matrices under finite sequences of elementary unitary similarities”, Linear Algebra Appl., 254 (1997), 79–98 | DOI | MR | Zbl

[4] Ikramov Kh. D., Elzner L., “O matritsakh, dopuskayuschikh unitarnoe privedenie k lentochnomu vidu”, Matem. zametki, 64:6 (1998), 871–880 | MR | Zbl

[5] Jagels C. F., Reichel L., “A fast minimal residual algorithm for shifted unitary matrices”, Numer. Linear Algebra Appl., 1 (1994), 555–570 | DOI | MR | Zbl

[6] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001