Solving parabolic equations on locally refined grids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 2031-2043 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An implicit finite difference scheme for solving the heat conduction equation on locally refined grids in a rectangular domain is considered. To solve the resulting system of equations, the conjugate gradient method with preconditioning is used. This method is a variant of the incomplete Cholesky decomposition or modified incomplete Cholesky decomposition. A modification of the computation of the preconditioning matrix for the variant of the incomplete Cholesky-conjugate gradient method for the case of the numerical solution of heat conduction equations with a rapidly varying thermal conductivity coefficient is proposed. Variants of the above-mentioned method designed for use on parallel computer systems with MIMD architecture are proposed. The solution of model problems on a moderate number of processors is used to examine the rate of convergence and the efficiency of the proposed methods.
@article{ZVMMF_2005_45_11_a10,
     author = {O. Yu. Milyukova and V. F. Tishkin},
     title = {Solving parabolic equations on locally refined grids},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2031--2043},
     year = {2005},
     volume = {45},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a10/}
}
TY  - JOUR
AU  - O. Yu. Milyukova
AU  - V. F. Tishkin
TI  - Solving parabolic equations on locally refined grids
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 2031
EP  - 2043
VL  - 45
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a10/
LA  - ru
ID  - ZVMMF_2005_45_11_a10
ER  - 
%0 Journal Article
%A O. Yu. Milyukova
%A V. F. Tishkin
%T Solving parabolic equations on locally refined grids
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 2031-2043
%V 45
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a10/
%G ru
%F ZVMMF_2005_45_11_a10
O. Yu. Milyukova; V. F. Tishkin. Solving parabolic equations on locally refined grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 2031-2043. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a10/

[1] Gilmanov A. N., Metody adaptivnykh setok v zadachakh gazovoi dinamiki, Fizmatlit, M., 2000 | MR

[2] Berger M. J., Oliger J., “Adaptive mesh refinement for hyperbolic partial equations”, J. Comput. Phys., 53 (1984), 484–512 | DOI | MR | Zbl

[3] Pervaitz M. M., Baron J. R., “Spatiotemporal adaptation algorithm for two dimensional reacting flows”, AIAA Journal, 27:10 (1989), 1368–1376 | DOI | MR

[4] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[5] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[6] Saad Y., van der Vorst H., “Iterative solution of linear systems in 20th centure”, J. Comput. and Appl. Math., 123 (2000), 1–33 | DOI | MR | Zbl

[7] Meijerink J. A., van der Vorst H. A., “An iterative solution method for linear systems, of which the coefficient matrix is a symmetric M-matrix”, Math. Comput., 31:137 (1977), 148–162 | MR | Zbl

[8] Gustafsson I., “A class of first order factorization methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl

[9] Kucherov A. B., Makarov M. M., “Metod priblizhennoi faktorizatsii dlya resheniya raznostnykh smeshannykh kraevykh zadach”, Raznostnye metody matem. fiz., Izd-vo MGU, M., 1984, 54–65

[10] Axelsson O., Lindskog G., “On the eigevalue distribution of class of preconditioning methods”, Numer. Math., 48 (1986), 479–498 | DOI | MR | Zbl

[11] Doi S., “On parallelism and convergence of incomplete LU factorization”, Appl. Numer. Math., 7:5 (1991), 417–436 | DOI | MR | Zbl

[12] Milyukova O. Yu., “Parallel approximate factorization method for solving discreate elliptic equations”, Parallel Comput., 27 (2001), 1365–1379 | DOI | MR | Zbl

[13] Milyukova O. Yu., “Parallelnye varianty nekotorykh iteratsionnykh metodov s faktorizovannoi matritsei predobuslovlivaniya”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1619–1636 | MR | Zbl

[14] Notay Y., “An efficient parallel discrete PDE solver”, Parallel Comput., 21 (1995), 1725–1748 | DOI | MR

[15] Notay Y., “DRIC: a dinamic version of the RIC method”, J. Numer. Linear. Algebra with Appl., 1 (1994), 511–533 | DOI | MR

[16] Duff I. S., Meurant G. A., “The effect of ordering on preconditioned conjugate gradients”, BIT, 29 (1989), 635–657 | DOI | MR | Zbl

[17] Milyukova O. Yu., Popov I. V., “Parallelnye iteratsionnye metody s faktorizovannymi matritsami predobuslovlivaniya dlya resheniya diskretnykh ellipticheskikh uravnenii na nestrukturirovannoi treugolnoi setke”, Matem. modelirovanie, 15:10 (2003), 3–16 | MR | Zbl

[18] Kershaw D. S., “The incomplete Cholesky-Conjugate gradient method for the iterative solution of systems of linear equations”, J. Comput. Phys., 26 (1978), 43–65 | DOI | MR | Zbl

[19] Milyukova O. Yu., “Parallel iterative methods with factored preconditioning matrices for solving discrete elliptic equations”, Parallel Comput. Fluid Dynamics (Moscow, Russia, May 13–15, 2003), Elsevier, Amsterdam etc., 2004, 97–104 | Zbl

[20] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR

[21] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A. i dr., Raznostnye skhemy na neregulyarnykh setkakh, Minsk, 1996

[22] Milyukova O. Yu., “Parallelnyi variant obobschennogo poperemenno-treugolnogo metoda dlya resheniya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2002–2012 | MR | Zbl

[23] Milyukova O. Yu., Chetverushkin B. N., “Parallelnyi variant poperemenno-treugolnogo metoda”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 219–229 | MR | Zbl