Regularization of unstable finite-dimensional linear problems based on augmented systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 1919-1927 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method for solving unstable problems that can be reduced to arbitrary systems of linear algebraic equations (which may not be of full rank or may be inconsistent) is examined. This method is based on the reduction of an arbitrary (in general, inconsistent) linear system to an equivalent consistent augmented system with a symmetric matrix. The proposed approach makes it possible to entirely eliminate the problem of choosing a regularization parameter for arbitrary (in general, inconsistent) linear systems, because this parameter must be coordinated only with a measure of error in the matrix of the original system. Issues related to efficient numerical implementation of the proposed regularizing algorithms are discussed.
@article{ZVMMF_2005_45_11_a1,
     author = {A. I. Zhdanov},
     title = {Regularization of unstable finite-dimensional linear problems based on augmented systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1919--1927},
     year = {2005},
     volume = {45},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a1/}
}
TY  - JOUR
AU  - A. I. Zhdanov
TI  - Regularization of unstable finite-dimensional linear problems based on augmented systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1919
EP  - 1927
VL  - 45
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a1/
LA  - ru
ID  - ZVMMF_2005_45_11_a1
ER  - 
%0 Journal Article
%A A. I. Zhdanov
%T Regularization of unstable finite-dimensional linear problems based on augmented systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1919-1927
%V 45
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a1/
%G ru
%F ZVMMF_2005_45_11_a1
A. I. Zhdanov. Regularization of unstable finite-dimensional linear problems based on augmented systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 11, pp. 1919-1927. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_11_a1/

[1] Morozov V. A., “Algoritmicheskie osnovy metodov resheniya nekorrektnykh zadach”, Vychisl. metody i programmirovanie, 45 (2003), 130–141

[2] Bjöork Å., “Numerical stability of methods for solving augmented systems”, Contemporary Math., 204, 1997, 51–60 | MR

[3] Tikhonov A. N., “O priblizhennykh sistemakh lineinykh algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 20:6 (1980), 1373–1383 | MR | Zbl

[4] Samarskii A. A., Gulin A. V., Chislennye metody matematicheskoi fiziki, Nauchnyi mir, M., 2000

[5] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, MGU, M., 1989