Projection difference scheme for a parabolic functional differential equation with two-dimensional transformation of arguments
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1848-1859 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear parabolic functional differential equation with the functional part containing a generalized superposition of the unknown solution and a transformation of the two-dimensional spatial argument is considered. A projection difference scheme for the approximation of the initial Dirichlet boundary value problem in a rectangle is proposed for a wide class of measurable, including noninvertible, transformations. An estimate of the rate of convergence to the generalized solutions of the initial problem of order $O(\tau^{1/4-\gamma}+h^{1/2-2\gamma})$ in the norm $L_2(Q)$ without a priori assumptions on the invertibility of the transformation and without any mesh size matching is obtained.
@article{ZVMMF_2005_45_10_a9,
     author = {A. V. Razgulin},
     title = {Projection difference scheme for a parabolic functional differential equation with two-dimensional transformation of arguments},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1848--1859},
     year = {2005},
     volume = {45},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a9/}
}
TY  - JOUR
AU  - A. V. Razgulin
TI  - Projection difference scheme for a parabolic functional differential equation with two-dimensional transformation of arguments
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1848
EP  - 1859
VL  - 45
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a9/
LA  - ru
ID  - ZVMMF_2005_45_10_a9
ER  - 
%0 Journal Article
%A A. V. Razgulin
%T Projection difference scheme for a parabolic functional differential equation with two-dimensional transformation of arguments
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1848-1859
%V 45
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a9/
%G ru
%F ZVMMF_2005_45_10_a9
A. V. Razgulin. Projection difference scheme for a parabolic functional differential equation with two-dimensional transformation of arguments. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1848-1859. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a9/

[1] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu. et al., “Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Optical Soc. Amer. Ser. B, 9:1 (1992), 78–90 | DOI

[2] Ramazza P. L., Ducci S., Arecchi F. T., “Optical diffraction-free patterns induced by a discrete translational transport”, Phys. Rev. Letts., 81:19 (1998), 4128–4131 | DOI

[3] Razgulin A. V., “Ob avtokolebaniyakh v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. matem. i matem. fiz., 33:1 (1993), 69–80 | MR | Zbl

[4] Razgulin A. V., “Rotational multi-petal waves in optical system with 2-D feedback”, Chaos in Optics, Proc. SPIE, 2039, ed. Rajarshi Roy, 1993, 342–352

[5] Chutkii V. A., Razgulin A. V., “Statsionarnye struktury v funktsionalno-differentsialnom uravnenii diffuzii s otrazheniem prostranstvennogo argumenta”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2003, no. 2, 13–20

[6] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Analys.: TMA, 32:2 (1998), 261–278 | DOI | MR | Zbl

[7] Skubachevskii A.L̇., “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. ur-niya, 34:10 (1998), 1394–1401 | MR | Zbl

[8] Potapov M. M., “Uravnenie nelineinoi optiki s preobrazovaniyami prostranstvennoi nezavisimoi peremennoi v roli upravlyayuschikh vozdeistvii”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 1997, no. 3, 13–16 | MR | Zbl

[9] Razgulin A. V., “Ob odnom klasse funktsionalno-differentsialnykh parabolicheskikh uravnenii nelineinoi optiki”, Differents. ur-niya, 36:3 (2000), 400–407 | MR | Zbl

[10] Razgulin A. V., “O parabolicheskikh funktsionalno-differentsialnykh uravneniyakh s upravlyaemym preobrazovaniem prostranstvennykh argumentov”, Dokl. RAN, 403:4 (2005), 1–4 | MR | Zbl

[11] Akopyan Yu. R., Oganesyan L. A., “Variatsionno-raznostnyi metod resheniya dvumernykh lineinykh parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 17:1 (1977), 109–118 | MR | Zbl

[12] Zlotnik A. A., “Otsenka skorosti skhodimosti v $V_2(\mathcal{Q}_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 1980, no. 1, 27–35 | MR | Zbl

[13] Razgulin A. V., “Localized and periodic patterns in nonlinear optical system with controlled transforms of spatial arguments”, ICONO'98: Nonlinear Optical Phenomena in Information Technologies, Proc. SPIE, 3733, 211–217

[14] Razgulin A. V., Savvina S. S., “Numerical optimization of the two-dimensional transformation of arguments in the functional-differential diffusion equation”, Comput. Math. Modeling, 15:4 (2004), 333–343 | DOI | MR | Zbl

[15] Razgulin A. V., “Approksimatsiya zadachi upravleniya preobrazovaniem argumentov v nelineinom parabolicheskom uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:12 (2001), 1844–1856 | MR | Zbl

[16] Razgulin A. V., Roganovich I. B., “Convergence of the projection difference scheme for the nonlinear parabolic equation with transformed spatial argument”, Comput. Math. Modeling, 12:3 (2001), 262–270 | DOI | MR

[17] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[18] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl

[19] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[20] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl

[21] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR