@article{ZVMMF_2005_45_10_a7,
author = {S. V. Petropavlovsky},
title = {Efficient algorithm for proper-time computations of long electromagnetic phenomena in a bounded computational domain},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1826--1836},
year = {2005},
volume = {45},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a7/}
}
TY - JOUR AU - S. V. Petropavlovsky TI - Efficient algorithm for proper-time computations of long electromagnetic phenomena in a bounded computational domain JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1826 EP - 1836 VL - 45 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a7/ LA - ru ID - ZVMMF_2005_45_10_a7 ER -
%0 Journal Article %A S. V. Petropavlovsky %T Efficient algorithm for proper-time computations of long electromagnetic phenomena in a bounded computational domain %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1826-1836 %V 45 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a7/ %G ru %F ZVMMF_2005_45_10_a7
S. V. Petropavlovsky. Efficient algorithm for proper-time computations of long electromagnetic phenomena in a bounded computational domain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1826-1836. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a7/
[1] Berenger J., “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl
[2] Gedney S. D., “An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices”, IEEE Trans. Antennas Propagat., 44 (1996), 1630–1639 | DOI
[3] Teixeira F. L., Hwang K.-P., Chew W. C. et al., “Conformal PML-FDTD schemes for electromagnetic field”, IEEE Trans. Antennas Propagat., 49 (2001), 900–906 | DOI
[4] Ryabenkii B. C., “Tochnyi perenos raznostnykh kraevykh uslovii”, Vychisl. mekhan. tverdogo tela, Nauka, M., 1990, 129–145
[5] Ryaben'kii V. S., “Nonreflecting time-dependent boundary conditions on artificial boundaries of varying location and shape”, Appl. Numer. Math., 33 (2000), 481–492 | DOI | MR
[6] Ryabenkii B. C., Turchaninov V. I., Tsynkov S. V., “Ispolzovanie lakun resheniya 3D-volnovogo uravneniya dlya vychisleniya resheniya zadachi Koshi na bolshikh vremenakh”, Matem. modelirovanie, 11:12 (1999), 113–126 | MR
[7] Turchaninov V. I., “Svoistvo lakun resheniya raznostnogo analoga prostranstvennogo volnovogo uravneniya”, Dokl. RAN, 2000, no. 4, 451 | MR | Zbl
[8] Ryaben'kii V. S., Tsynkov S. V., Turchaninov V. I., “Long-time numerical computation of wave type solutions driven by moving sources”, Appl. Numer. Math., 38 (2001), 187–222 | DOI | MR
[9] Ryabenkii B. C., Turchaninov V. I., Tsynkov S. V., “Neotrazhayuschie granichnye usloviya dlya zameny otbrasyvaemykh uravnenii s lakunami”, Matem. modelirovanie, 12:19 (2000), 113–126 | MR
[10] Ryaben'kii V. S., Tsynkov S. V., Turchaninov V. I., “Global discrete artificial boundary conditions for time-dependent wave propagation”, J. Comput. Phys., 174 (2002), 712–758 | DOI | MR
[11] Tsynkov S. V., “On the application of lacunae-based methods to Maxwell's equations”, J. Comput. Phys., 199 (2004), 126–149 | DOI | MR | Zbl
[12] Ryabenkii B. C., Turchaninov V. I., “Ispolzovanie lakun giperbolicheskikh uravnenii i metoda raznostnykh potentsialov dlya rascheta difraktsii voln v ogranichennoi okrestnosti rasseivatelya, no na bolshikh vremenakh”, Zh. vychisl. matem. i matem. fiz., 45:8 (2005), 1435–1449 | MR
[13] Turchaninov V. I., Chislennaya metodika resheniya trekhmernykh uravnenii Maksvella v sfericheskikh peremennykh v neodnorodnoi dissipativnoi srede s vydeleniem perednego fronta, Preprint No 18, IPMatem. RAN, M., 1993 | MR
[14] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[15] Yee K. S., “Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas Propagat., 14 (1966), 302–304 | DOI