Global search in a nonconvex optimal control problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1785-1800 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of controlling a linear system in order to maximize a convex terminal functional is considered. Local and global search algorithms are proposed, and their convergence is examined. The efficiency of the algorithms is demonstrated by computational experiments.
@article{ZVMMF_2005_45_10_a3,
     author = {A. S. Strekalovsky and E. V. Sharankhaeva},
     title = {Global search in a nonconvex optimal control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1785--1800},
     year = {2005},
     volume = {45},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a3/}
}
TY  - JOUR
AU  - A. S. Strekalovsky
AU  - E. V. Sharankhaeva
TI  - Global search in a nonconvex optimal control problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1785
EP  - 1800
VL  - 45
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a3/
LA  - ru
ID  - ZVMMF_2005_45_10_a3
ER  - 
%0 Journal Article
%A A. S. Strekalovsky
%A E. V. Sharankhaeva
%T Global search in a nonconvex optimal control problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1785-1800
%V 45
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a3/
%G ru
%F ZVMMF_2005_45_10_a3
A. S. Strekalovsky; E. V. Sharankhaeva. Global search in a nonconvex optimal control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1785-1800. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a3/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[2] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[3] Antonik V. G., Srochko V. A., “K resheniyu zadach optimalnogo upravleniya na osnove metodov linearizatsii”, Zh. vychisl. matem. i matem. fiz., 32:7 (1992), 979–991 | MR | Zbl

[4] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[5] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[6] Strekalovsky A. S., Vasiliev I. L., “On global search for non-convex optimal control problems”, Developments Global Optimization Nonconvex Optimizat. and Its Applic., Kluwer Acad. Publ., Dordrecht, 1997, 121–133 | MR | Zbl

[7] Strekalovsky A. S., “On global maximum of a convex terminal functional in optimal control problems”, J. Global Optimizati., 1995, no. 7, 75–91 | DOI | MR | Zbl

[8] Strekalovskii A. S., “O poiske globalnogo maksimuma vypuklogo funktsionala na dopustimom mnozhestve”, Zh. vychisl. matem. i matem. fiz., 33:3 (1993), 349–364 | MR

[9] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[10] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[11] Lyubushin A. A., Chernousko F. L., “Metod posledovatelnykh priblizhenii dlya rascheta optimalnogo upravleniya”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 147–159 | Zbl

[12] Polak E., Chislennye metody optimizatsii. Edinyi podkhod, Mir, M., 1974 | MR | Zbl