Control of vibrations of coupled objects with distributed and lumped parameters
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1766-1784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of vibration damping in a system described by the set of a wave equation and a second-order ordinary differential equation is considered. The system state functions are coupled through the boundary conditions for the wave equation.
@article{ZVMMF_2005_45_10_a2,
     author = {A. I. Egorov and L. N. Znamenskaya},
     title = {Control of vibrations of coupled objects with distributed and lumped parameters},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1766--1784},
     year = {2005},
     volume = {45},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a2/}
}
TY  - JOUR
AU  - A. I. Egorov
AU  - L. N. Znamenskaya
TI  - Control of vibrations of coupled objects with distributed and lumped parameters
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1766
EP  - 1784
VL  - 45
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a2/
LA  - ru
ID  - ZVMMF_2005_45_10_a2
ER  - 
%0 Journal Article
%A A. I. Egorov
%A L. N. Znamenskaya
%T Control of vibrations of coupled objects with distributed and lumped parameters
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1766-1784
%V 45
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a2/
%G ru
%F ZVMMF_2005_45_10_a2
A. I. Egorov; L. N. Znamenskaya. Control of vibrations of coupled objects with distributed and lumped parameters. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1766-1784. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a2/

[1] Timoshenko S. P., Kolebaniya v inzhenernom dele, Fizmatlit, M., 1959

[2] Filippov A. P., Kolebaniya deformiruemykh sistem, Mashinostroenie, M., 1970

[3] Erofeev V. I., Kazhaev V. V., Semerikova N. P., Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinost, Fizmatlit, M., 2002

[4] Goloskokov E. G., Filippov A. P., Nestatsionarnye kolebaniya mekhanicheskikh sistem, Nauk. dumka, Kiev, 1966 | Zbl

[5] Kononenko V. O., Kolebatelnye sistemy s ogranichennym vozbuzhdeniem, Nauka, M., 1964 | Zbl

[6] Egorov A. I., “Upravlenie uprugimi kolebaniyami”, Dokl. AN USSR. Ser. A, 1986, no. 5, 60–63 | MR | Zbl

[7] Egorov A. I., “Ob optimalnykh protsessakh v sistemakh, soderzhaschikh ob'ekty s raspredelennymi parametrami. I; II”, Avtomatika i telemekhan., 26:6 (1965), 977–994 ; 7, 1063–1079 | MR | Zbl

[8] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2004 | MR | Zbl

[9] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Differents. ur-niya, 36:12 (2000), 1670–1686 | MR

[10] Ilin V. A., “Granichnoe upravlenie protsessom kolebaniya struny na odnom kontse pri zakreplennom vtorom kontse i pri uslovii suschestvovaniya konechnoi energii”, Dokl. RAN, 378:6 (2001), 743–747 | MR

[11] Znamenskaya L. H., Upravlenie uprugimi kolebaniyami, Fizmatlit, M., 2004 | Zbl