An algebra over estimation algorithms: monotone decision rules
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1893-1904 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Decision rules (for recognition algorithms) with additional monotonicity constraints are investigated. It is shown that the correctness of an algorithm that uses these decision rules is equivalent to the standard notion of correctness studied in the classical works on the algebraic approach to the recognition problem.
@article{ZVMMF_2005_45_10_a13,
     author = {A. G. D'yakonov},
     title = {An algebra over estimation algorithms: monotone decision rules},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1893--1904},
     year = {2005},
     volume = {45},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a13/}
}
TY  - JOUR
AU  - A. G. D'yakonov
TI  - An algebra over estimation algorithms: monotone decision rules
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1893
EP  - 1904
VL  - 45
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a13/
LA  - ru
ID  - ZVMMF_2005_45_10_a13
ER  - 
%0 Journal Article
%A A. G. D'yakonov
%T An algebra over estimation algorithms: monotone decision rules
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1893-1904
%V 45
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a13/
%G ru
%F ZVMMF_2005_45_10_a13
A. G. D'yakonov. An algebra over estimation algorithms: monotone decision rules. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1893-1904. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a13/

[1] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, Nauka, M., 1978, 5–68

[2] Zhuravlev Yu. I., “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov, II”, Kibernetika, 1977, no. 6, 21–27 | Zbl

[3] Zhuravlev Yu. I., Rudakov K. V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Problemy prikladnoi matematiki i informatiki, Nauka, M., 1987, 187–198 | MR

[4] Rudakov K. B., “Ob algebraicheskoi teorii universalnykh i lokalnykh ogranichenii dlya zadach klassifikatsii”, Raspoznavanie, klassifikatsiya, prognoz, 1, Nauka, M., 1989, 176–201 | MR

[5] Rudakov K. V., Vorontsov K. V., “O metodakh optimizatsii i monotonnoi korrektsii v algebraicheskom podkhode k probleme raspoznavaniya”, Dokl. RAN, 367:3 (1999), 314–317 | MR | Zbl

[6] Matrosov V. L., “O kriteriyakh polnoty modeli algoritmov vychisleniya otsenok i ee algebraicheskikh zamykanii”, Dokl. AN SSSR, 258:4 (1981), 791–796 | MR

[7] Dyakonov A. G., “Algebra nad algoritmami vychisleniya otsenok: minimalnaya stepen korrektnogo algoritma”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 1134–1145 | MR

[8] Uilson R., Vvedenie v teoriyu grafov, Mir, M., 1977 | MR

[9] Zhuravlev Yu. I., “Neparametricheskie zadachi raspoznavaniya obrazov”, Kibernetika, 1976, no. 6, 93–103 | MR | Zbl

[10] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[11] Hall P., “On representatives of subsets”, J. London Math. Soc., 10 (1935), 26–30 | DOI

[12] Vorontsov K. B., “Obzor sovremennykh issledovanii po probleme kachestva obucheniya algoritmov”, Tavricheskii vestnik informatiki i matematiki, 2004, no. 1, 5–24 | MR | Zbl