Fast convergent iterative methods for the computation of weighted pseudoinverses and weighted normal pseudosolutions with singular weights
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1731-1755 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To calculate weighted pseudoinverses and weighted normal pseudosolutions with singular weights, iterative processes with the convergence order $p\ge 2$ are constructed and analyzed. Expansions of weighted pseudoinverses in matrix power products are obtained and used in the construction of those processes. The issue of the adaptation of the iterative processes designed for the computation of weighted normal pseudosolutions to solving constrained least squares problems is examined.
@article{ZVMMF_2005_45_10_a0,
     author = {E. F. Galba and V. S. Deineka and I. V. Sergienko},
     title = {Fast convergent iterative methods for the computation of weighted pseudoinverses and weighted normal pseudosolutions with singular weights},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1731--1755},
     year = {2005},
     volume = {45},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a0/}
}
TY  - JOUR
AU  - E. F. Galba
AU  - V. S. Deineka
AU  - I. V. Sergienko
TI  - Fast convergent iterative methods for the computation of weighted pseudoinverses and weighted normal pseudosolutions with singular weights
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1731
EP  - 1755
VL  - 45
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a0/
LA  - ru
ID  - ZVMMF_2005_45_10_a0
ER  - 
%0 Journal Article
%A E. F. Galba
%A V. S. Deineka
%A I. V. Sergienko
%T Fast convergent iterative methods for the computation of weighted pseudoinverses and weighted normal pseudosolutions with singular weights
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1731-1755
%V 45
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a0/
%G ru
%F ZVMMF_2005_45_10_a0
E. F. Galba; V. S. Deineka; I. V. Sergienko. Fast convergent iterative methods for the computation of weighted pseudoinverses and weighted normal pseudosolutions with singular weights. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 10, pp. 1731-1755. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_10_a0/

[1] Galba E. F., “Iteratsionnye metody dlya vychisleniya vzveshennogo normalnogo psevdoresheniya s vyrozhdennymi vesami”, Zh. vychisl. matem. i matem. fiz., 39:6 (1999), 882–896 | MR | Zbl

[2] Galba E. F., Molchanov H. H., Skopetskii V. V., “Iteratsionnye metody dlya vychisleniya vzveshennoi psevdoobratnoi matritsy s vyrozhdennymi vesami”, Kibernetika i sistemnyi analiz, 1999, no. 5, 150–169 | MR | Zbl

[3] Ben-Israel A., Cohen D., “On iterative computation of generalized inverses and associated projections”, SIAM J. Numer. Analys., 3:3 (1966), 410–419 | DOI | MR | Zbl

[4] Nashed M. Z., Generalized inverses and applications, Acad. Press, New York, 1976 | MR | Zbl

[5] Nashed M. Z., “Inner, outer, and generalized inverses in Banach and Hilbert spaces”, Numer. Functional Analys. and Optimizat., 9:4 (1987), 261–325 | DOI | MR | Zbl

[6] Meleshko V. I., “Ustoichivye k vozmuscheniyam psevdoobrascheniya zamknutykh operatorov”, Zh. vychisl. matem. i matem. fiz., 17:5 (1977), 1132–1143 | MR | Zbl

[7] Sen S. K., Prabhu S. S., “Optimal iterative schemes for computing the Moore-Penrose matrix inverse”, Int. J. System Sci., 7:8 (1976), 847–852 | DOI | MR | Zbl

[8] Tanabe K., “Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method”, Linear Algebra and Appl., 10 (1975), 163–175 | DOI | MR | Zbl

[9] Sergienko I. V., Galba E. F., Deineka B. C., “Iteratsionnye metody s razlichnymi skorostyami skhodimosti dlya vychisleniya vzveshennykh psevdoobratnykh matrits i vzveshennykh normalnykh psevdoreshenii s polozhitelno-opredelennymi vesami”, Kibernetika i sistemnyi analiz, 2004, no. 5, 20–44 | MR | Zbl

[10] Ward J. F., Bouillon T. L., Lewis T. O., “Weighted pseudoinverses with singular weights”, SIAM J. Appl. Math., 21:3 (1971), 480–482 | DOI | MR | Zbl

[11] Moore E. H., “On the reciprocal of the general algebraic matrix”, Abstract Bull. Amer. Math. Soc., 26 (1920), 394–395

[12] Penrose R., “A generalized inverse for matrices”, Proc. Cambridge Philos. Soc., 51:3 (1955), 406–413 | DOI | MR | Zbl

[13] Albert A., Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977 | MR

[14] Lancaster P., Rozsa P., “Eigenvectors of $H$-self-adjoint matrices”, Z. angew. Math. und Mech., 64:9 (1984), 439–441 | DOI | MR | Zbl

[15] Ikramov Kh. D., “Ob algebraicheskikh svoistvakh klassov psevdoperestanovochnykh i $H$-samosopryazhennykh matrits”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 155–169 | MR

[16] Baksalary J. K., Kala R., “Symmetrizers of matrices”, Linear Algebra and Appl., 35:1 (1981), 51–62 | DOI | MR | Zbl

[17] Sen S. K., Venkaiah V. Ch., “On symmetrizing a matrix”, Indian J. Pure and Appl. Math., 19:6 (1988), 554–561 | MR | Zbl

[18] Galba E. F., “Vzveshennoe psevdoobraschenie matrits s vyrozhdennymi vesami”, Ukr. matem. zhurnal, 46:10 (1994), 1323–1327 | MR | Zbl

[19] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[20] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[21] Galba E. F., Deineka B. C., Sergienko I. V., “Predelnye predstavleniya vzveshennykh psevdoobratnykh matrits s vyrozhdennymi vesami i regulyarizatsiya zadach”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 1928–1946 | MR | Zbl

[22] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[23] Ben-Israel A., Charnes A., “Contribution to the theory of generalized inverses”, J. Soc. Industr. Appl. Math., 11:3 (1963), 667–699 | DOI | MR | Zbl

[24] Lonseth A. T., “Approximate solution of Fredholm type integral equations”, Bull. Amer. Math. Soc., 60 (1954), 415–430 | DOI | MR | Zbl

[25] Galba E. F., “Predstavlenie vzveshennoi psevdoobratnoi matritsy cherez drugie psevdoobratnye matritsy”, Dokl. HAH Ukrainy, 1997, no. 4, 12–17 | MR | Zbl

[26] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR

[27] Eiden L., “A weight pseudoinverse generalized singular values and constrained least squares problems”, BIT, 22:4 (1982), 487–502 | DOI | MR

[28] Vaarmann O., Obobschennye obratnye otobrazheniya, Valgus, Tallinn, 1988 | MR

[29] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[30] Meleshko V. I., “Issledovanie ustoichivykh $L$-psevdoobraschenii neogranichennykh zamknutykh operatorov metodom regulyarizatsii”, Differents. ur-niya, 15:5 (1979), 921–935 | MR | Zbl

[31] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR

[32] Zhukovskii E. L., Liptser R. Sh., “O rekurrentnom sposobe vychisleniya normalnykh reshenii lineinykh algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 843–857

[33] Ikramov Kh. D., Matin far M., “O kompyuterno-algebraicheskikh protsedurakh dlya lineinoi zadachi naimenshikh kvadratov s lineinymi svyazyami”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 206–212 | MR | Zbl

[34] Ikramov Kh. D., Matin far M., “Pereschet normalnykh psevdoreshenii v rekursivnoi zadache naimenshikh kvadratov s lineinymi svyazyami”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1726–1734 | MR | Zbl

[35] Golub G. H., “Some modified eigenvalue problems”, SIAM Rev., 15:2 (1973), 318–334 | DOI | MR | Zbl

[36] Golub G. H., Matt V. von, “Quadratically constrained least squares and quadratic problems”, Numer. Math., 59:6 (1991), 561–580 | DOI | MR | Zbl

[37] Arkharov E. V., Shafiev R. A., “Metody regulyarizatsii zadachi svyazannogo psevdoobrascheniya s priblizhennymi dannymi”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 347–353 | MR | Zbl