On optimal decompositions of finite metric configurations in pattern recognition problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 9, pp. 1697-1707 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_9_a14,
     author = {A. I. Maǐsuradze},
     title = {On optimal decompositions of finite metric configurations in pattern recognition problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1697--1707},
     year = {2004},
     volume = {44},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_9_a14/}
}
TY  - JOUR
AU  - A. I. Maǐsuradze
TI  - On optimal decompositions of finite metric configurations in pattern recognition problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 1697
EP  - 1707
VL  - 44
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_9_a14/
LA  - ru
ID  - ZVMMF_2004_44_9_a14
ER  - 
%0 Journal Article
%A A. I. Maǐsuradze
%T On optimal decompositions of finite metric configurations in pattern recognition problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 1697-1707
%V 44
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_9_a14/
%G ru
%F ZVMMF_2004_44_9_a14
A. I. Maǐsuradze. On optimal decompositions of finite metric configurations in pattern recognition problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 9, pp. 1697-1707. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_9_a14/

[1] Voronin Yu. A., Nachala teorii skhodstva, Nauka, Novosibirsk, 1991 | MR | Zbl

[2] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. I; II; III”, Kibernetika, 1977, no. 4, 5–17; No 6, 21–27; 1978, No 2, 35–43 | Zbl

[3] Zhuravlev Yu. I., Rudakov K. V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Probl. prikl. matem. i informatiki, Sb. statei, eds. O. M. Belotserkovskii i dr., Nauka, M., 1987, 187–198 | MR

[4] Deza M., Dutour M., Data mining for cones of metrics, quasi-metrics, hemi-metrics, and super-metrics, ENS, Paris, 2002

[5] Maisuradze A. I., “Ob ispolzovanii netrivialnykh bazisov prostranstv metricheskikh konfiguratsii v zadachakh raspoznavaniya”, Intellektualizatsiya obrabotki informatsii, Mezhdunar. nauchn. konf., Tezisy dokl., Krymskii nauchn. tsentr NAN Ukrainy, Tavrich. nats. un-t, Simferopol, 2002, 58–60

[6] Tylkin M. E., “O geometrii Kheminga edinichnykh kubov”, Dokl. AN SSSR, 134 (1960), 1037–1040 | MR

[7] Bandelt H.-J., Dress A. W., “A canonical decomposition theory for metrics on a finite set”, Advances Math., 92 (1992), 47–105 | DOI | MR | Zbl

[8] Fichet B., “The role played by $L_1$ in data analysis”, Statistic. Data Analys. Based on the $L_1$-Norm and Related Methods, ed. Y. Dodge, Elsevier Sci. Publs., Amsterdam; North-Holland, 1987, 185–193 | MR

[9] Avis D., Deza M., “The cut cone, $L_1$ embeddability, complexity and multicommodity flows”, Networks, 21 (1991), 595–617 | DOI | MR | Zbl

[10] Draper N. R., Smith H., Applied regression analys, Wiley, New York, 1981 | MR | Zbl