On multistep methods of the interpolation type with an automated checking of the global error
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 8, pp. 1388-1409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_8_a5,
     author = {G. Yu. Kulikov and S. K. Shindin},
     title = {On multistep methods of the interpolation type with an automated checking of the global error},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1388--1409},
     year = {2004},
     volume = {44},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a5/}
}
TY  - JOUR
AU  - G. Yu. Kulikov
AU  - S. K. Shindin
TI  - On multistep methods of the interpolation type with an automated checking of the global error
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 1388
EP  - 1409
VL  - 44
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a5/
LA  - ru
ID  - ZVMMF_2004_44_8_a5
ER  - 
%0 Journal Article
%A G. Yu. Kulikov
%A S. K. Shindin
%T On multistep methods of the interpolation type with an automated checking of the global error
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 1388-1409
%V 44
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a5/
%G ru
%F ZVMMF_2004_44_8_a5
G. Yu. Kulikov; S. K. Shindin. On multistep methods of the interpolation type with an automated checking of the global error. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 8, pp. 1388-1409. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a5/

[1] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[2] Arushanyan A. B., Zaletkin S. F., Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo MGU, M., 1990 | Zbl

[3] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[4] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[5] Butcher J. C., Numerical methods for ordinary differential equations, John Wiley and Sons, Chichester, 2003 | MR

[6] Novikov V. A., Novikov E. A., “O povyshenii effektivnosti algoritmov integrirovaniya obyknovennykh differentsialnykh uravnenii za schet kontrolya ustoichivosti”, Zh. vychisl. matem. i matem. fiz., 25:7 (1985), 1023–1030 | MR | Zbl

[7] Hall G., “Equilibrium states of Runge–Kutta schemes”, ACM Trans. Math. Software, 11 (1985), 289–301 | DOI | MR | Zbl

[8] Hall G., “Equilibrium states of Runge–Kutta schemes, II”, ACM Trans. Math. Software, 12 (1986), 183–192 | DOI | MR | Zbl

[9] Hall G., Higham D. J., “Analysis of stepsize selection schemes for Runge–Kutta codes”, IMA J. Numer. Analys., 8 (1988), 305–310 | DOI | MR | Zbl

[10] Enright W. H., “Analysis of error control strategies for continuous Runge–Kutta methods”, SIAM J. Numer. Analys., 26:3 (1989), 588–599 | DOI | MR | Zbl

[11] Higham D. J., “Robust defect control with Runge–Kutta schemes”, SIAM J. Numer. Analys., 26:5 (1989), 1175–1183 | DOI | MR | Zbl

[12] Skeel R. D., “Thirteen ways to estimate global error”, Numer. Math., 48 (1986), 1–20 | DOI | MR | Zbl

[13] Novikov E. A., “Otsenka globalnoi oshibki $A$-ustoichivykh metodov resheniya zhestkikh sistem”, Dokl. RAN, 343:4 (1995), 452–455 | MR | Zbl

[14] Skeel R. D., “Global error estimation and the backward differentiation formulas”, Appl. Math. Comput., 31 (1989), 197–208 | DOI | MR | Zbl

[15] Kulikov G. Yu., “Ob odnom sposobe kontrolya oshibki dlya metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 38:10 (1998), 1651–1653 | MR | Zbl

[16] Kulikov G. Yu., Shindin S. K., “Ob odnom sposobe upravleniya globalnoi oshibkoi mnogoshagovykh metodov”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1308–1329 | MR | Zbl

[17] Kulikov G. Yu., Shindin S. K., “Ob effektivnom vychislenii asimptoticheski vernykh otsenok lokalnoi i globalnoi oshibok dlya mnogoshagovykh metodov s postoyannymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 840–861 | MR

[18] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Fizmatgiz, M., 1962 | MR

[19] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR

[20] Crozeix M., Lisbona F. J., “The convergence of variable-stepsize, variable formula, multistep methods”, SIAM J. Numer. Analys., 21 (1984), 512–534 | DOI | MR

[21] Gear C. W., Tu K. W., “The effects of variable mesh size on the stability of multistep methods”, SIAM J. Numer. Analys., 11 (1974), 1025–1043 | DOI | MR | Zbl

[22] Kulikov G. Yu., Shindin S. K., “A local-global stepsize control for multistep methods applied to semi-explicit index 1 differential-algebraic equations”, Korean J. Comput. Appl. Math., 6:3 (1999), 463–492 | MR | Zbl

[23] Kulikov G. Yu., Shindin S. K., “O mnogoshagovykh ekstrapolyatsionnykh metodakh dlya obyknovennykh differentsialnykh uravnenii”, Dokl. RAN, 372:3 (2000), 301–304 | MR | Zbl

[24] Kulikov G. Yu., Shindin S. K., “An advanced local-global stepsize control for multistep methods”, Numer. Math. and Advanced Applic., Proc. of the 3-rd European Conf., World Scient, Singapore, 2000, 593–600 | Zbl

[25] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[26] Kulikov G. Yu., “On implicit extrapolation methods for ordinary differential equations”, Rus. J. Numer. Analys. Math. Modelling, 17:1 (2002), 41–69 | MR

[27] Kulikov G. Yu., “Revision of the theory of symmetric one-step methods for ordinary differential equations”, Korean J. Comput. Appl. Math., 5:3 (1998), 579–600 | MR | Zbl