@article{ZVMMF_2004_44_8_a2,
author = {L. G. Gurin},
title = {Multicriteria optimization problems under uncertainty},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1356--1363},
year = {2004},
volume = {44},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a2/}
}
L. G. Gurin. Multicriteria optimization problems under uncertainty. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 8, pp. 1356-1363. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a2/
[1] Germeier Yu. B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971 | MR
[2] Mashunin Yu. K., Teoreticheskie osnovy i metody vektornoi optimizatsii v upravlenii ekonomicheskimi sistemami, Logos, M., 2001 | Zbl
[3] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | MR
[4] Sovremennoe sostoyanie teorii issledovaniya operatsii, Nauka, M., 1979 | MR
[5] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964 | Zbl
[6] Pospelova I. I., “Klassifikatsiya zadach vektornoi optimizatsii s neopredelennymi faktorami”, Zh. vychisl. matem. i matem. fiz., 40:6 (2000), 860–876 | MR | Zbl
[7] Yudin D. B., Zadachi i metody stokhasticheskogo programmirovaniya, Sov. radio, M., 1972 | Zbl
[8] Uilks S., Matematicheskaya statistika, Nauka, M., 1967 | MR
[9] Gurin L. G., “Ob odnom printsipe prinyatiya reshenii pri nalichii sluchainykh i neopredelennykh faktorov”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1397–1404 | MR
[10] Gurin L. G., “Ob upravlenii dinamicheskoi sistemoi pri vozdeistvii na nee sluchainogo protsessa”, Zh. vychisl. matem. i matem. fiz., 25:10 (1985), 1474–1485 | MR | Zbl
[11] Khei Dzh., Vvedenie v metody baiesovskogo statisticheskogo vyvoda, Finansy i statistika, M., 1987
[12] Savchuk V. P., Baiesovskie metody statisticheskogo otsenivaniya: Nadezhnost tekhnicheskikh ob'ektov, Nauka, M., 1989 | MR | Zbl