On low rank perturbations of the Hermitian and unitary matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 8, pp. 1331-1345 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_8_a0,
     author = {M. Dana and Kh. D. Ikramov},
     title = {On low rank perturbations of the {Hermitian} and unitary matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1331--1345},
     year = {2004},
     volume = {44},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a0/}
}
TY  - JOUR
AU  - M. Dana
AU  - Kh. D. Ikramov
TI  - On low rank perturbations of the Hermitian and unitary matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 1331
EP  - 1345
VL  - 44
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a0/
LA  - ru
ID  - ZVMMF_2004_44_8_a0
ER  - 
%0 Journal Article
%A M. Dana
%A Kh. D. Ikramov
%T On low rank perturbations of the Hermitian and unitary matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 1331-1345
%V 44
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a0/
%G ru
%F ZVMMF_2004_44_8_a0
M. Dana; Kh. D. Ikramov. On low rank perturbations of the Hermitian and unitary matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 8, pp. 1331-1345. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_8_a0/

[1] Voevodin V. V., “Problema nesamosopryazhennogo rasshireniya metoda sopryazhennykh gradientov zakryta”, Zh. vychisl. matem. i matem. fiz., 23:2 (1983), 477–479 | MR | Zbl

[2] Faber V., Manteuffel T., “Necessary and sufficient conditions for the existence of a conjugate gradient method”, SIAM J. Numer. Analys., 21:2 (1984), 352-362 | DOI | MR | Zbl

[3] Ikramov Kh. D., “Matritsa, sopryazhennaya k normalnoi matritse $A$, kak mnogochlen ot $A$”, Dokl. RAN, 338:3 (1994), 304–305 | MR | Zbl

[4] Gragg W. B., “Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle”, J. Comput. Appl. Math., 46 (1993), 183–198 | DOI | MR | Zbl

[5] Jagels C. F., Reichel L., “A fast minimal residual algorithm for shifted unitary matrices”, Numer. Linear Algebra Appl., 1 (1994), 555–570 | DOI | MR | Zbl

[6] Barth T., Manteuffel T., “Multiple recursion conjugate gradients algorithms. Part I: Sufficient conditions”, SIAM J. Matrix Analys. Appl., 21:3 (2000), 768–796 | DOI | MR | Zbl

[7] McCullough S. A., Rodman L., “Hereditary classes of operators and matrices”, Amer. Math. Monthly, 104:5 (1997), 415–430 | DOI | MR | Zbl

[8] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1990 | MR