@article{ZVMMF_2004_44_7_a4,
author = {A. F. Izmailov},
title = {Optimization problems with complementary constraints: regularity, optimality conditions and sensibility},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1209--1228},
year = {2004},
volume = {44},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_7_a4/}
}
TY - JOUR AU - A. F. Izmailov TI - Optimization problems with complementary constraints: regularity, optimality conditions and sensibility JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2004 SP - 1209 EP - 1228 VL - 44 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_7_a4/ LA - ru ID - ZVMMF_2004_44_7_a4 ER -
%0 Journal Article %A A. F. Izmailov %T Optimization problems with complementary constraints: regularity, optimality conditions and sensibility %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2004 %P 1209-1228 %V 44 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_7_a4/ %G ru %F ZVMMF_2004_44_7_a4
A. F. Izmailov. Optimization problems with complementary constraints: regularity, optimality conditions and sensibility. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 7, pp. 1209-1228. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_7_a4/
[1] Luo Z.-Q., Pang J. S., Ralph D., Mathematical programs with equilibrium constraints, Cambridge Univ. Press, Cambridge, 1996 | MR
[2] Outrata J. V., Kocvara M., Zowe J., Nonsmooth approach to optimization problems with equilibrium constraints: Theory, applications and numerical results, Kluwer Acad. Publ., Boston, 1998 | MR | Zbl
[3] Chen Y., Florian M., “The nonlinear bilevel programming problem: formulations, regularity and optimality conditions”, Optimization, 32 (1995), 193–209 | DOI | MR | Zbl
[4] Fletcher R., Leyffer S., Ralph D., Scholtes S., Local convergence of SQP methods for mathematical programs with equilibrium constraints, Numer. Analys. Rep. NA No 209, Dep. Math., Univ. Dundee, 2002
[5] Izmailov A. F., Solodov M. B., Chokparov K. M., “Globalno skhodyaschiesya algoritmy nyutonovskogo tipa dlya zadach optimizatsii bez trebovaniya regulyarnosti ogranichenii”, Vopr. modelirovaniya i analiza v zadachakh prinyatiya reshenii, VTs RAN, M., 2003, 63–82
[6] Izmailov A. F., Solodov M. F., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR
[7] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl
[8] Arutyunov A. V., Izmailov A. F., “Analiz chuvstvitelnosti dlya anormalnykh zadach optimizatsii s konusnym ogranicheniem”, Zh. vychisl. matem. i matem. fiz., 44:4 (2004), 586–609 | MR
[9] Bonnans F., Shapiro A., “Optimization problems with perturbations: a guided tour”, SIAM Rev., 40:2 (1998), 228–264 | DOI | MR | Zbl
[10] Robinson S. M., “Stability theorems for systems of inequalities. Part II: Differentiable nonlinear systems”, SIAM J. Numer. Analys., 13 (1976), 497–513 | DOI | MR | Zbl
[11] Arutyunov A. V., “Teorema Banakha dlya konusov i nelineinye otobrazheniya v anormalnoi tochke”, Nelineinaya dinamika i upravlenie, 3, Fizmatlit, M., 2003, 51–72
[12] Levitin E. S., Teoriya vozmuschenii v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1992 | MR | Zbl
[13] Bonnans F., Shapiro A., Perturbation analysis of optimization problems, Springer, New York, 2000 | MR
[14] Scheel H., Scholtes S., “Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity”, Math. Operat. Res., 25 (2000), 1–22 | DOI | MR | Zbl
[15] Scholtes S., Stöhr M., How stringent is the linear independence assumption for mathematical programs with complementarity constraints?, Math. Operat. Res., 26 (2001), 851–863 | DOI | MR | Zbl
[16] Pang J.-S., Fukushima M., “Complementarity constraint qualifications and simplified $B$-stationarity conditions for mathematical programs with equilibrium constraints”, Comput. Optimizat. Appl., 13 (1999), 111–136 | DOI | MR | Zbl
[17] Luo Z.-Q., Pang J.-S., Ralph D., Wu S.-Q., “Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints”, Math. Program., 75 (1996), 19–76 | DOI | MR | Zbl
[18] Izmailov A. F., Solodov M. V., “The theory of 2-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions”, Math. Operat. Res., 27 (2002), 614–635 | DOI | MR | Zbl
[19] Izmailov A. F., Solodov M. V., “Complementarity constraint qualification via the theory of 2-regularity”, SIAM J. Optimizat., 13 (2002), 368–385 | DOI | MR | Zbl
[20] Ye J. J., “Optimality conditions for optimization problems with complementarity constraints”, SIAM J. Optimizat., 9 (1999), 374–387 | DOI | MR | Zbl
[21] Outrata J. V., “Optimality conditions for a class of mathematical programs with equilibrium constraints”, Math. Operat. Res., 24 (1999), 627–644 | DOI | MR | Zbl
[22] Hu X., Ralph D., “A note on sensitivity of value function of mathematical programs with complementarity constraints”, Math. Program., 93 (2002), 265–279 | DOI | MR | Zbl
[23] Lucet Y., Ye J. J., “Sensitivity analysis of the value function for optimization problems with variational inequality constraints”, SIAM J. Control Optimizat., 40:3 (2001), 699–723 | DOI | MR
[24] Robinson S. M., “Strongly regular generalized equations”, Math. Operat. Res., 5 (1980), 43–62 | DOI | MR | Zbl