@article{ZVMMF_2004_44_6_a7,
author = {I. V. Konnov},
title = {The proximal method for solving nonmonotonic variational inequalities},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1030--1038},
year = {2004},
volume = {44},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a7/}
}
TY - JOUR AU - I. V. Konnov TI - The proximal method for solving nonmonotonic variational inequalities JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2004 SP - 1030 EP - 1038 VL - 44 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a7/ LA - ru ID - ZVMMF_2004_44_6_a7 ER -
I. V. Konnov. The proximal method for solving nonmonotonic variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 6, pp. 1030-1038. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a7/
[1] Martinet B., “Regularization d'inéquations variationnelles par approximations successives”, Rev. Franc. Inform. Rech. Oper. R, 4:3 (1970), 154–159 | MR
[2] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimizat., 14:5 (1976), 877–898 | DOI | MR | Zbl
[3] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR
[4] Billups S. C., Ferris M. C., “QPCOMP: A quadratic programming based solver for mixed complementarity problems”, Math. Program., 76:3 (1997), 533–562 | DOI | MR | Zbl
[5] Kaplan A., Tichatschke R., “Proximal point methods and nonconvex optimization”, J. Global Optimizat., 13 (1998), 389–406 | DOI | MR | Zbl
[6] El Farouq N., “Pseudomonotone variational inequalities: convergence of proximal methods”, J. Optimal Theory and Appl., 109:2 (2001), 311–326 | DOI | MR | Zbl
[7] Noor M. A., Noor K. I., Rassias Th. M., “Invitation to variational inequalities”, Analysis, Geometry and Groups: A Riemann Legacy Volume, Hadronic Press, Palm Harbor, 1993, 373–448 | MR | Zbl
[8] Harker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Program., 48:2 (1990), 161–220 | DOI | MR | Zbl
[9] Pang J.-S., “The implicit complementarity problem”, Nonlinear Programming, 4, Acad. Press, New York, 1981, 487–518 | MR
[10] Bensusan A., Lions Zh.-L., Impulsnoe upravlenie i kvazivariatsionnye neravenstva, Nauka, M., 1987
[11] Mosco U., “Implicit variational problems and quasivariational inequalities”, Nonlinear Operators and Calculus of Variations, Lect. Notes in Math., 543, Springer, Berlin, 1976, 83–156 | MR
[12] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin–Heidelberg, 2001 | MR
[13] Yao J.-C., Guo J.-S., “Variational and generalized variational inequalities with discontinuous mappings”, J. Math. Analys. and Appl., 182:2 (1994), 371–392 | DOI | MR | Zbl
[14] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii R. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhn. Ser. Matem. analiz, 19, VINITI, M., 1982, 127–231 | MR
[15] Konnov I. V., “Kombinirovannyi relaksatsionnyi metod dlya obobschennykh variatsionnykh neravenstv”, Izv. Vuzov. Matematika, 2001, no. 12, 46–54 | MR | Zbl
[16] Konnov I. V., “Kombinirovannyi metod dlya resheniya variatsionnykh neravenstv s monotonnymi operatorami”, Zh. vychisl. matem. i matem. fiz., 39:7 (1999), 1091–1097 | MR | Zbl
[17] Patriksson M., Nonlinear programming and variational inequality problems: a unified approach, Kluwer, Dordrecht, 1999 | MR | Zbl