A parallel algorithm for searching for the shortest path on a prefractal graph
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 6, pp. 1147-1152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_6_a16,
     author = {A. A. Kochkarov and R. A. Kochkarov},
     title = {A parallel algorithm for searching for the shortest path on a prefractal graph},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1147--1152},
     year = {2004},
     volume = {44},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a16/}
}
TY  - JOUR
AU  - A. A. Kochkarov
AU  - R. A. Kochkarov
TI  - A parallel algorithm for searching for the shortest path on a prefractal graph
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 1147
EP  - 1152
VL  - 44
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a16/
LA  - ru
ID  - ZVMMF_2004_44_6_a16
ER  - 
%0 Journal Article
%A A. A. Kochkarov
%A R. A. Kochkarov
%T A parallel algorithm for searching for the shortest path on a prefractal graph
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 1147-1152
%V 44
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a16/
%G ru
%F ZVMMF_2004_44_6_a16
A. A. Kochkarov; R. A. Kochkarov. A parallel algorithm for searching for the shortest path on a prefractal graph. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 6, pp. 1147-1152. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a16/

[1] Voevodin V. V., Voevodin Vl. V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002

[2] Kryukov V. A., “Razrabotka parallelnykh programm dlya vychislitelnykh klasterov i sistem. Problemy i perspektivy”, Superkompyuternye vychisl.-informatsionnye tekhnologii v fiz. i khim. issledovaniyakh, III Vseros. molodezhnaya shkola, IPKhF RAN, M., 2001, 106–121

[3] Arkhipova N. I., Kulba V. V., Upravlenie v chrezvychainykh situatsiyakh, RGGU, M., 1998

[4] Malinetskii G. G., Mitin N. A., Podlazov A. V. i dr., Upravlenie riskom, Nauka, M., 2000

[5] Efros A. L., Fizika i geometriya besporyadka, Nauka, M., 1982 | MR

[6] Malinetskii G. G., Shakaeva M. S., Model ierarkhicheskoi organizatsii, Preprint No 57, IPMatem. RAN, M., 1994

[7] Mesarovich M., Mako D., Takakhara I., Teoriya ierarkhicheskikh mnogourovnevykh sistem, Mir, M., 1973

[8] Munzner T., Interactive visualization of large graphs and networks, Ph. D. Dis., Stanford Univ., 2000

[9] Somik K. B., Svyaznye informatsionnye struktury, Finansy i statistika, M., 1997

[10] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[11] L. Petronero, E. Tozatti (red.), Fraktaly v fizike, Mir, M., 1988 | MR

[12] Kochkarov A. M., Raspoznavanie fraktalnykh grafov. Algoritmicheskii podkhod, Spets. astrofiz. observatoriya RAN, Nizhnii Arkhyz, 1998

[13] Voevodin V. V., Matematicheskie modeli i metody v parallelnykh protsessakh, Nauka, M., 1986

[14] Asanov M. O., Baranskii V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy, NITs “Regulyarnaya i khaotich. dinamika”, Izhevsk, 2001