@article{ZVMMF_2004_44_6_a1,
author = {O. Y. Bubnova and I. P. Ryazantseva},
title = {A continuous second-order regularization method for monotone equations in a {Banach} space},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {968--978},
year = {2004},
volume = {44},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a1/}
}
TY - JOUR AU - O. Y. Bubnova AU - I. P. Ryazantseva TI - A continuous second-order regularization method for monotone equations in a Banach space JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2004 SP - 968 EP - 978 VL - 44 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a1/ LA - ru ID - ZVMMF_2004_44_6_a1 ER -
%0 Journal Article %A O. Y. Bubnova %A I. P. Ryazantseva %T A continuous second-order regularization method for monotone equations in a Banach space %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2004 %P 968-978 %V 44 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a1/ %G ru %F ZVMMF_2004_44_6_a1
O. Y. Bubnova; I. P. Ryazantseva. A continuous second-order regularization method for monotone equations in a Banach space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 6, pp. 968-978. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_6_a1/
[1] Distel D., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR
[2] Figiel T., “On the moduli of convexity and smoothness”, Studia Math., 56:2 (1976), 121–155 | MR | Zbl
[3] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Springer, Berlin etc., 1979 | MR
[4] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl
[5] Alber Ya. I., Metody resheniya nelineinykh operatornykh uravnenii i variatsionnykh neravenstv v banakhovykh prostranstvakh, Dis. ...dokt. fiz.-mat. nauk, GGU, Gorkii, 1986
[6] Alber Ya., “Metric and generalized proejection operators in Banach spaces: properties and applications”, Funct. Different. Equations, 1:1 (1994), 1–21 | MR
[7] Antipin A. S., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipy proektirovaniya”, Vopr. kibernetiki. Vychisl. voprosy analiza bolshikh sistem, Nauchnyi sovet po kompleksnoi probleme “Kibernetika” AN SSSR, M., 1989, 5–43 | MR
[8] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR
[9] Vasilev F. P., Nedich A., “Regulyarizovannyi nepreryvnyi metod proektsii gradienta vtorogo poryadka”, Vestn. MGU. Ser. 15, 1994, no. 2, 3–11 | MR
[10] Vasilev F. P., Amochkina T. V., Nedich A., “Ob odnom regulyarizovannom variante nepreryvnogo metoda proektsii gradienta vtorogo poryadka”, Vestn. MGU. Ser. 15, 1995, no. 3, 39–46 | MR
[11] Ryazantseva I. P., Duntseva E. A., “Ob odnom nepreryvnom metode resheniya vypuklykh ekstremalnykh zadach”, Differents. ur-niya, 34:6 (1998), 480–485 | MR | Zbl
[12] Ryazantseva I. P., “Nepreryvnyi metod resheniya zadach uslovnoi minimizatsii”, Zh. vychisl. matem. i matem. fiz., 39:5 (1999), 734–742 | MR | Zbl
[13] Alber Ya. I., “A new approach to the investigation of evolution differential equations in Banach spaces”, Nonlinear Analys. Theor., Meth. and Appl., 23:9 (1994), 1115–1134 | DOI | MR | Zbl
[14] Ryazantseva I. P., Ustoichivye metody resheniya nelineinykh monotonnykh nekorrektnykh zadach, Dis. ...dokt. fiz.-matem. nauk, NGU, Nizhnii Novgorod, 1996
[15] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[16] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR