Experimental analysis of pseudorandom number generators by means of a new statistical test
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 5, pp. 812-816 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_5_a5,
     author = {V. A. Monarev and B. Ya. Ryabko},
     title = {Experimental analysis of pseudorandom number generators by means of a new statistical test},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {812--816},
     year = {2004},
     volume = {44},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a5/}
}
TY  - JOUR
AU  - V. A. Monarev
AU  - B. Ya. Ryabko
TI  - Experimental analysis of pseudorandom number generators by means of a new statistical test
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 812
EP  - 816
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a5/
LA  - ru
ID  - ZVMMF_2004_44_5_a5
ER  - 
%0 Journal Article
%A V. A. Monarev
%A B. Ya. Ryabko
%T Experimental analysis of pseudorandom number generators by means of a new statistical test
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 812-816
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a5/
%G ru
%F ZVMMF_2004_44_5_a5
V. A. Monarev; B. Ya. Ryabko. Experimental analysis of pseudorandom number generators by means of a new statistical test. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 5, pp. 812-816. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a5/

[1] Maurer U., “A universal statistical test for random bit generators”, J. Cryptology, 5:2 (1992), 89–105 | DOI | MR | Zbl

[2] Knuth D. E., The art of computer programming, v. 2, Seminumerical algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1981 | MR | Zbl

[3] Ryabko B. Ya., Stognienko V. S., Shokin Yu. I., “A new test for randomness and its application to some cryptographic problems”, J. Statist. Planning and Inference, 2003 (accepted; available online, see doi 10.1016/S0378-3758(03)00149-6) | MR

[4] Rukhin A., Soto J., Nechvatal J. et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publ. 800–22 (with revision dated May, 15. 2001) http://csrc.nist.gov/rng/SP800-22b.pdf

[5] Park S. K., Miller K. W., “Random number generators: good ones are hard to find”, Communs. ACM, 31 (1988), 1192–1201 | DOI | MR

[6] Ripley B. D., “Thoughts on pseudorandom number generators”, J. Comput. Appl. Math., 31 (1990), 153–163 | DOI | Zbl

[7] Monahan J. F., “Accuracy in random number generation”, Math. Comput., 45 (1985), 559–568 | DOI | MR | Zbl

[8] Dagpunar J., Principles of random variate generation, Clarendon Press, Oxford, 1988 | MR | Zbl

[9] Ugrin-Sparac G., “Stochastic investigations of pseudo-random number generators”, Computing, 46 (1991), 53–65 | DOI | MR | Zbl

[10] L'Ecuyer P., “Tests based on sum-functions of spacings for uniform random numbers”, J. Statist. Comput. and Simulation, 59 (1997), 251–269 | DOI

[11] Jennergren L. P., “Another method for random number generation on microcomputers”, Simulation, 41 (1983), 79 | DOI

[12] Marsaglia G., “The structure of linear congruential sequences”, Applic. Number Theory Numer. Analys., Acad. Press, New York, 1972, 248–285 | MR

[13] Fishman G. S., Monte Carlo: concepts, algorithms, and applications, Springer series in operations research, 1, Springer, New York, 1996 | MR | Zbl

[14] Anderson S. L., “Random number generators on vector supercomputers and other advanced architectures”, SIAM Rev., 32 (1990), 221–251 | DOI | MR | Zbl

[15] Smith J. I., C++ For scientists and engeneers, McGraw-Hill Book Company, New York, 1991

[16] Percus O. E., Whitlock P. A., “Theory and application of Marsaglia's monkey test for pseudorandom number generators”, ACM Trans. on Modeling and Comput. Simulation, 5 (1995), 87–100 | DOI | Zbl

[17] Moeschlin O., Grycko E., Pohl C., Steinert F., Experimental stochastics, Springer, Berlin–Heidelberg, 1998 | Zbl

[18] Entacher K., A collection of classical pseudorandom number generators with linear structures, advanced version http://crypto.mat.sbg.ac.at/results/karl/server/server.html

[19] L'Ecuyer P., “Tables of linear congruential generators of different sizes and good lattice structure”, Math. Comput., 68 (1999), 249–260 | DOI | MR