@article{ZVMMF_2004_44_5_a13,
author = {Yu. V. Bibik and S. P. Popov and D. A. Sarancha},
title = {Numerical solution of the {Bogoyavlenskii} kinetic equation and the {Lotka{\textendash}Volterra} system with diffusion},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {904--916},
year = {2004},
volume = {44},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a13/}
}
TY - JOUR AU - Yu. V. Bibik AU - S. P. Popov AU - D. A. Sarancha TI - Numerical solution of the Bogoyavlenskii kinetic equation and the Lotka–Volterra system with diffusion JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2004 SP - 904 EP - 916 VL - 44 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a13/ LA - ru ID - ZVMMF_2004_44_5_a13 ER -
%0 Journal Article %A Yu. V. Bibik %A S. P. Popov %A D. A. Sarancha %T Numerical solution of the Bogoyavlenskii kinetic equation and the Lotka–Volterra system with diffusion %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2004 %P 904-916 %V 44 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a13/ %G ru %F ZVMMF_2004_44_5_a13
Yu. V. Bibik; S. P. Popov; D. A. Sarancha. Numerical solution of the Bogoyavlenskii kinetic equation and the Lotka–Volterra system with diffusion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 5, pp. 904-916. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a13/
[1] Svirezhev Yu. M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 | MR | Zbl
[2] Kerner B. S., Osipov V. V., Avtosolitony, Nauka, M., 1991 | Zbl
[3] Medvinskii A. B., Petrovskii S. V., Tikhonova I. A. i dr., “Formirovanie prostranstvenno-vremennykh struktur, fraktaly i khaos v kontseptualnykh ekologicheskikh modelyakh na primere dinamiki vzaimodeistvuyuschikh populyatsii planktona i ryby”, Uspekhi fiz. nauk, 172:1 (2002), 31–66
[4] Ataullakhanov F. I., Zarnitsyna V. I., Kondratovich A. Yu. i dr., “Osobyi klass avtovoln — avtovolny s ostanovkoi — opredelyaet prostranstvennuyu dinamiku svertyvaniya krovi”, Uspekhi fiz. nauk, 172:6 (2002), 671–689
[5] Lobanov A. I., Sarancha D. A., Starozhilova T. K., “Uchet sezonnosti v modeli Lotka-Volterra”, Biofiz. slozhnykh sistem, 47:2 (2002), 325–330
[6] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony, Nauka, M., 1991 | MR | Zbl
[7] Lobanov A. I., Matematicheskie modeli biologicheskikh sistem, opisyvaemye uravneniyami “reaktsiya–diffuziya” i “reaktsiya–diffuziya–konvektsiya”, Diss. ...dokt. fiz.-matem. nauk, MFTI, M., 2001
[8] Lobanov A. I., “Ob ustoichivosti nelineinykh raznostnykh skhem”, Matem. modelirovanie protsessov upravleniya i obrabotki informatsii, Mezhvedomstvennyi sb., MFTI, M., 1992, 192–201
[9] Lobanov A. I., “On the stability of the non-linear difference schemes”, Phystechn. J., 1:1 (1994), 38–47
[10] Kholodov A. S., Lobanov A. I., “Numerical experiments in ecology medicine: elliptic problems”, Phystechn. J., 1:2 (1994), 3–11 | MR
[11] Sarancha D. A., Kolichestvennye metody v ekologii. Biofizicheskie aspekty i matematicheskoe modelirovanie, MFTI, M., 1997
[12] Shrira V. I., “O “pripoverkhnostnykh volnakh” verkhnego kvaziodnorodnogo sloya okeana”, Dokl. AN SSSR, 308:3 (1989), 732–736
[13] Bibik Yu. V., Zhuk V. I., “O dinamike solitonov dvumernykh nelineinykh uravnenii gidrodinamicheskogo tipa”, Matem. modelirovanie, 12:9 (2000), 109–126 | MR | Zbl
[14] Bibik Yu. V., Zhuk V. I., Popov S. P., Osnovnye zakonomernosti vzaimodeistviya dvumernykh gidrodinamicheskikh solitonov, VTs RAN, M., 2001
[15] Popov S. P., “Osobennosti chislennogo modelirovaniya dvukhsolitonnykh reshenii uravneniya Zakharova–Kuznetsova”, Zh. vychisl. matem. i matem. fiz., 39:2 (1999), 1749–1757 | MR | Zbl
[16] Petviashvili V. I., Pokhotelov O. A., Uedinennye volny v plazme i atmosfere, Energoatomizdat, M., 1989