Special grid approximations for the transport equation in strongly heterogeneous media with the $(x,y)$-geometry
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 5, pp. 883-903 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_5_a12,
     author = {O. V. Nikolaeva},
     title = {Special grid approximations for the transport equation in strongly heterogeneous media with the $(x,y)$-geometry},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {883--903},
     year = {2004},
     volume = {44},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a12/}
}
TY  - JOUR
AU  - O. V. Nikolaeva
TI  - Special grid approximations for the transport equation in strongly heterogeneous media with the $(x,y)$-geometry
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 883
EP  - 903
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a12/
LA  - ru
ID  - ZVMMF_2004_44_5_a12
ER  - 
%0 Journal Article
%A O. V. Nikolaeva
%T Special grid approximations for the transport equation in strongly heterogeneous media with the $(x,y)$-geometry
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 883-903
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a12/
%G ru
%F ZVMMF_2004_44_5_a12
O. V. Nikolaeva. Special grid approximations for the transport equation in strongly heterogeneous media with the $(x,y)$-geometry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 5, pp. 883-903. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a12/

[1] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1985 | MR

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[3] Mathews K. A., “On the propagation of rays in discrete ordinates”, Nucl. Sci. and Engng., 123 (1999), 155–180

[4] Brantley P. S., Larsen E. W., “Spatial and angular moment analysis of continuous and discretized transport problems”, Nucl. Sci. and Engng., 135 (2000), 199–226

[5] Larsen E. W., “Infinite medium solutions of the transport equation, $S_N$ discretization schemes, and the diffusion approximation” (Salt Lake City, Utah, USA, September 2001), Proc. Internat. Meeting on Math. Meth. Nucl. Applic.

[6] Pleteneva N. P., Shagaliev P. M., “Approksimatsiya dvumernogo uravneniya perenosa na chetyrekhugolnykh i mnogougolnykh prostranstvennykh setkakh po raznostnoi skheme s rasshirennym shablonom”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 1989, no. 3, 34–41

[7] Voronkov A. V., Sychugova E. P., “DSN-method for solving the transport equation”, Transport Theory and Statist. Phys., 22:2–3 (1993), 221–245 | DOI | MR | Zbl

[8] Voronkov A. V., Sychugova E. P., “Analysis of a class of characteristic methods for solving the transport quation in $x-y$ and $x-y-z$ geometry”, Proc. Internat. Conf. Math. Methods and Supercomputing for Nucl. Applic. (Saratoga Springs NY, USA, October 5–9, 1997), v. 2, 985–994

[9] Takeda T., Yamamoto T., “Nodal transport methods for $XYZ$ and hexagonal-$Z$ geometry”, Transport Theory and Statist. Phys., 30:4–6 (2001), 401–420 | DOI | Zbl

[10] Germogenova T. A., Shwetsov A. V., Voloschenko A. M., “Adaptive positive nodal method for transport equation”, Transport Theory and Statist. Phys., 23:7 (1994), 923–970 | DOI | MR | Zbl

[11] Hennart J. P., del Valle E., “A generalized nodal finite element formalism for discrete ordinate equations in slab geometry. I: Theory in continuous moment case”, Transport Theory and Statist. Phys., 24 (1995), 449–478 | DOI | MR | Zbl

[12] Hennart J. P., del Valle E., “A generalized nodal finite element formalism for discrete ordinate equations in slab geometry. II: Theory in discontinuous moment case”, Transport Theory and Statist. Phys., 24 (1995), 479 | DOI | MR | Zbl

[13] Asadzadeh M., “Convergence of a discontinuous Galerkin scheme for then neutron transport”, Transport Theory and Statist. Phys., 30:4–6 (2001), 357–384 | DOI | MR

[14] Bass L. P., Voloschenko A. M., Germogenova T. A., Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPMatem. AN SSSR, M., 1986

[15] Madsen N. K., “Spatial convergence properties of the diamond difference method in $x$, $y$ geometry”, Nucl. Sci. and Engng., 12 (1975), 164–176 | MR | Zbl

[16] Bayuk D. A., Germogenova T. A., Prosteishie raznostnye skhemy resheniya uravneniya perenosa v $(x, y)$ geometrii i sposoby ikh korrektsii, Preprint No 91, IPMatem. AN SSSR, M., 1986 | MR

[17] Bourhrara L., Sanchez R., “Stability of the theta-scheme for the time-dependent, multigroup, discrete ordinates approximation of the transport equation in slab geometry in the presence of delayed neutrons”, Transport Theory and Statist. Phys., 31:1 (2002), 35–64 | DOI | MR

[18] Larsen E. W., “Spatial convergence properties of the diamond difference method in $x$, $y$ geometry”, Nucl. Sci. and Engng., 80:4 (1982), 710–713

[19] Voloschenko A. V., Germogenova T. A., “Numerical solution of the time-dependent transport equation with pulsed sources”, Transport Theory and Statist. Phys., 23:6 (1994), 845–869 | DOI | MR | Zbl

[20] Lathrop K. D., “Spatial differencing of the transport equation: Positivity vs. accuracy”, J. Comput. Phys., 4:4 (1969), 475–490 | DOI

[21] Bass L. P., Nikolaeva O. V., “SWDD skhema MDO i rezultaty metodicheskikh raschetov”, dokl. na seminare, Algoritmy i programmy dlya neitronno-fiz. raschetov yadernykh reaktorov, Neitronika-97 (Obninsk, 25–27 oktyabrya 1997), 76–83 | Zbl

[22] Voloschenko A. M., “O reshenii uravneniya perenosa $\mathrm{DS}_n$ metodom v geterogennykh sredakh. Chast 2: Odnomernye sfericheskaya i tsilindricheskaya geometrii”, Chisl. reshenie ur-nii perenosa v odnomernykh zadachakh, IPMatem. AN SSSR, M., 1981, 64–91

[23] Azmy Y. Y., “The weighted diamond-difference form of nodal transport methods”, Nucl. Sci. and Engng., 98 (1988), 29–40

[24] Azmy Y. Y., “Local accuracy of weighted diamond difference schemes”, Trans. Amer. Nucl. Soc., 83 (2000), 433–435

[25] Morel J. E., Larsen E. W., “A multiple balance approach for differencing the $S_n$ equation”, Nucl. Sci. and Engng., 105, 1–15 | MR

[26] Germogenova T. A., Bass L. P., Kuznetsov B. C., Nikolaeva O. V., “Matematicheskoe modelirovanie perenosa izluchenii v dvumernykh i trekhmernykh oblastyakh na kompyuterakh s parallelnoi arkhitekturoi”, Radiatsionnaya zaschita i radiatsionnaya bezopasnost v yadernykh tekhnologiyakh, VIII Ros. konf. (Obninsk, 17- 19 sentyabrya, 2002), 14–16

[27] Voloschenko A. M., Shvetsov A. V., “KASKAD-1.5 — programma dlya resheniya uravneniya perenosa neitronov, fotonov i zaryazhennogo izlucheniya v dvumernykh geometriyakh”, Zaschita ot ioniziruyuschikh izluchenii yaderno-tekhnich. ustanovok, VII Ros. konf. (Obninsk, 22–24 sentyabrya 1998), 49–51

[28] Nikolaeva O. V., Polozhitelnye setochnye algoritmy rascheta radiatsionnykh polei v zaschitakh slozhnoi struktury, Dis. ...kand. fiz.-matem. nauk, IPMatem. RAN, M., 2001

[29] Grabezhnoi V. A., Korobeinikov V. V., Popov E. P. i dr., “Raschet funktsionalov polei izlucheniya v shakhte reaktora BN-600 s primeneniem metoda sopryazheniya”, Izv. vuzov. Yadernaya energetika, 2003, no. 3, 54–62