Jump determination for an original function by using its Laplace transform
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 5, pp. 777-785 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_5_a1,
     author = {V. M. Ryabov},
     title = {Jump determination for an original function by using its {Laplace} transform},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {777--785},
     year = {2004},
     volume = {44},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a1/}
}
TY  - JOUR
AU  - V. M. Ryabov
TI  - Jump determination for an original function by using its Laplace transform
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 777
EP  - 785
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a1/
LA  - ru
ID  - ZVMMF_2004_44_5_a1
ER  - 
%0 Journal Article
%A V. M. Ryabov
%T Jump determination for an original function by using its Laplace transform
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 777-785
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a1/
%G ru
%F ZVMMF_2004_44_5_a1
V. M. Ryabov. Jump determination for an original function by using its Laplace transform. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 5, pp. 777-785. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_5_a1/

[1] Widder D. V., The Laplace transform, Princeton Univ. Press, London, 1946 | MR

[2] Ryabov B. M., “Vychislenie znachenii i skachkov originala s pomoschyu formul Viddera”, Vestn. LGU, 1989, no. 1, 114–116 | MR | Zbl

[3] Ryabov V. M., “O tochnosti vychisleniya znachenii i skachkov originala metodom Viddera”, Vestn. LGU, 1989, no. 15, 35–38 | MR

[4] Ryabov V. M., “Vychislenie skachkov originala po ego izobrazheniyu s pomoschyu kvadraturnykh formul”, Vestn. SPbGU, 1998, no. 1, 36–39 | MR | Zbl

[5] Ryabov V. M., “O tochnosti nekotorykh metodov obrascheniya preobrazovaniya Laplasa”, Metody vychislenii, 14, Izd-vo LGU, L., 1985, 59–71 | MR

[6] Ryabov V. M., “Metod obrascheniya preobrazovaniya Laplasa, ispolzuyuschii znacheniya izobrazheniya na veschestvennoi osi”, Vestn. LGU, 1982, no. 1, 48–53 | MR | Zbl

[7] Ryabov V. M., “Chislennye metody obrascheniya preobrazovaniya Laplasa”, Metody vychislenii, 13, Izd-vo LGU, L., 1983, 97–116 | MR

[8] May C. P., “Saturation and inverse theorems for combinations of a class of exponential-type operators”, Canad. J. Math., 28:6 (1976), 1224–1250 | DOI | MR | Zbl

[9] Fedoryuk M. V., Asimptotika: Integraly i ryady, Nauka, M., 1987 | MR

[10] Krylov V. I., Skoblya N. S., Spravochnaya kniga po chislennomu obrascheniyu preobrazovaniya Laplasa, Nauka i tekhn., Minsk, 1968 | MR

[11] Matveeva T. A., Ryabov V. M., “O nekotorykh svoistvakh kvadraturnykh formul chislennogo obrascheniya preobrazovaniya Laplasa”, Vestn. SPbGU. Ser. 1, 2002, no. 1 (1), 16–23