On the uniform convergence of a classical difference scheme on an irregular grid for the one-dimensional singularly perturbed reaction-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 3, pp. 476-492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_3_a8,
     author = {V. B. Andreev},
     title = {On the uniform convergence of a classical difference scheme on an irregular grid for the one-dimensional singularly perturbed reaction-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {476--492},
     year = {2004},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_3_a8/}
}
TY  - JOUR
AU  - V. B. Andreev
TI  - On the uniform convergence of a classical difference scheme on an irregular grid for the one-dimensional singularly perturbed reaction-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 476
EP  - 492
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_3_a8/
LA  - ru
ID  - ZVMMF_2004_44_3_a8
ER  - 
%0 Journal Article
%A V. B. Andreev
%T On the uniform convergence of a classical difference scheme on an irregular grid for the one-dimensional singularly perturbed reaction-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 476-492
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_3_a8/
%G ru
%F ZVMMF_2004_44_3_a8
V. B. Andreev. On the uniform convergence of a classical difference scheme on an irregular grid for the one-dimensional singularly perturbed reaction-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 3, pp. 476-492. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_3_a8/

[1] Andreev V. B., “Funktsiya Grina i apriornye otsenki reshenii monotonnykh trekhtochechnykh singulyarno vozmuschennykh raznostnykh skhem”, Differents. ur-niya, 37:7 (2001), 880–890 | MR | Zbl

[2] Kopteva N., “Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problems”, SIAM J. Numer. Analys., 39:2 (2001), 423–441 | DOI | MR | Zbl

[3] Bakhvalov H. C., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[4] Liseikin V. D., Yanenko N. N., “O ravnomerno skhodyaschemsya algoritme chislennogo resheniya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s malym parametrom pri starshei proizvodnoi”, Chisl. metody mekhan. sploshnoi sredy, 12, no. 2, Novosibirsk, 1981, 45–56 | MR

[5] Andreev V. B., “O skhodimosti modifitsirovannoi monotonnoi skhemy Samarskogo na gladko sguschayuscheisya setke”, Zh. vychisl. matem. i matem. fiz., 38:8 (1998), 1266–1278 | MR | Zbl

[6] Andreev V. B., Kopteva N. V., “O ravnomernoi po malomu parametru skhodimosti monotonnykh trekhtochechnykh raznostnykh skhem”, Differents. ur-niya, 34:7 (1998), 921–928 | MR | Zbl

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[8] Savin I. A., “O skorosti ravnomernoi po malomu parametru skhodimosti raznostnoi skhemy dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 35:11 (1995), 1758–1765 | MR | Zbl

[9] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl

[10] Shishkin G. I., “Raznostnaya skhema na neravnomernoi setke dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 23:3 (1983), 609–619 | MR | Zbl

[11] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992