A discretization scheme for the Landweber method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 3, pp. 387-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_3_a0,
     author = {S. G. Solodkii},
     title = {A discretization scheme for the {Landweber} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {387--396},
     year = {2004},
     volume = {44},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_3_a0/}
}
TY  - JOUR
AU  - S. G. Solodkii
TI  - A discretization scheme for the Landweber method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 387
EP  - 396
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_3_a0/
LA  - ru
ID  - ZVMMF_2004_44_3_a0
ER  - 
%0 Journal Article
%A S. G. Solodkii
%T A discretization scheme for the Landweber method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 387-396
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_3_a0/
%G ru
%F ZVMMF_2004_44_3_a0
S. G. Solodkii. A discretization scheme for the Landweber method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 3, pp. 387-396. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_3_a0/

[1] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[2] Landweber L., “An iteration formula for Fredholm integral equations of the first kind”, Amer. J. Math., 73 (1951), 615–624 | DOI | MR | Zbl

[3] Temlyakov B. H., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 128, M., 1986, 3–112

[4] Pereverzev S. V., “Optimization of projection methods for solving ill-posed problems”, Computing, 55 (1995), 113–124 | DOI | MR | Zbl

[5] Schock E., “Implicite iterative methods for the approximate solution of ill-posed problems”, Bollettino U. M. I., B, 1:7 (1987), 1171–1184 | MR | Zbl

[6] K. I. Babenko (red.), Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, Nauka, M., 1979 | MR

[7] Pereverzev S. V., Optimizatsiya metodov priblizhennogo resheniya operatornykh uravnenii, In-t matem. NAN Ukrainy, Kiev, 1996 | MR

[8] Morozov V. A., “O regulyarizatsii nekorrektno postavlennykh zadach i vybore parametra regulyarizatsii”, Zh. vychisl. matem. i matem. fiz., 6:1 (1966), 170–175 | MR

[9] Solodky S. G., An economic approach to discretization on nonstationary iterated Tikhonov method, Preprint 327, Univ. Kaiserslautern, Fachbereich Math., 2001

[10] Maass P., Pereverzev S. V., Ramlau R., Solodky S. G., “An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection”, Numer. Math., 87 (2001), 485–502 | DOI | MR | Zbl

[11] Plato R., Vainikko G., “On the regularization of projection methods for solving ill-posed problems”, Numer. Math., 57 (1990), 63–79 | DOI | MR | Zbl

[12] Solodkii S. G., “Optimizatsiya proektsionnykh metodov resheniya lineinykh nekorrektnykh zadach”, Zh. vychisl. matem. i matem. fiz., 39:2 (1999), 195–203 | MR

[13] Louis A. K., Inverse und schlecht gestellte Probleme, Teubner, Stuttgart, 1989 | MR | Zbl