@article{ZVMMF_2004_44_2_a7,
author = {A. V. Arguchintsev},
title = {Optimization of hyperbolic systems with controlled initial-boundary conditions in the form of differential constraints},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {287--296},
year = {2004},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a7/}
}
TY - JOUR AU - A. V. Arguchintsev TI - Optimization of hyperbolic systems with controlled initial-boundary conditions in the form of differential constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2004 SP - 287 EP - 296 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a7/ LA - ru ID - ZVMMF_2004_44_2_a7 ER -
%0 Journal Article %A A. V. Arguchintsev %T Optimization of hyperbolic systems with controlled initial-boundary conditions in the form of differential constraints %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2004 %P 287-296 %V 44 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a7/ %G ru %F ZVMMF_2004_44_2_a7
A. V. Arguchintsev. Optimization of hyperbolic systems with controlled initial-boundary conditions in the form of differential constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 2, pp. 287-296. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a7/
[1] Golub N. N., “Neobkhodimye usloviya optimalnosti dlya mnogomernykh raspredelennykh sistem, soderzhaschikh zvenya s sosredotochennymi parametrami”, Differents. ur-niya, 16:10 (1980), 1878–1881 | MR | Zbl
[2] Markus M., Mizel V., “Semilinear hereditary hyperbolic systems with nonlocal boundary conditions, A”, J. Math. Analys. Appl., 76:2 (1980), 440–475 | DOI | MR
[3] Markus M., Mizel V., “Semilinear hereditary hyperbolic systems with nonlocal boundary conditions, B”, J. Math. Analys. Appl., 77:1 (1980), 1–19 | DOI | MR
[4] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000
[5] Arguchintsev A. V., Vasilev O. V., “Iteratsionnye protsessy printsipa maksimuma i ikh modifikatsii v sistemakh s raspredelennymi parametrami”, Differents. ur-niya, 32:6 (1996), 797–803 | MR | Zbl
[6] Srochko V. A., “Metod kvadratichnoi fazovoi approksimatsii dlya resheniya zadach optimalnogo upravleniya”, Izv. vuzov. Matematika, 1993, no. 12, 81–88 | MR | Zbl
[7] Arguchintsev A. V., “K poisku optimalnykh granichnykh upravlenii v dvumernykh polulineinykh giperbolicheskikh uravneniyakh”, Modeli i metody issledovaniya operatsii, Nauka, SO AN SSSR, Novosibirsk, 1988, 50–58 | MR
[8] Vasilev O. V., Srochko V. A., Terletskii V. A., Metody optimizatsii i ikh prilozheniya, v. 2, Optimalnoe upravlenie, Nauka, SO AN SSSR, Novosibirsk, 1990
[9] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[10] Zakharchenko B. C., Srochko V. A., “Metod priraschenii dlya resheniya kvadratichnykh zadach optimalnogo upravleniya”, Izv. RAN. Teoriya i sistemy upravleniya, 1995, no. 6, 145–154
[11] Srochko V. A., Dushutina S. N., Pudalova E. M., “Regulyarizatsiya printsipa maksimuma i metodov uluchsheniya v kvadratichnykh zadachakh optimalnogo upravleniya”, Izv. vuzov. Matematika, 1998, no. 10, 82–92 | MR | Zbl
[12] Baturin V. A., Urbanovich D. E., Priblizhennye metody optimalnogo upravleniya, osnovannye na printsipe rasshireniya, Nauka, SO RAN, Novosibirsk, 1997 | MR | Zbl
[13] Poluektov R. A. (red.), Dinamicheskaya teoriya biologicheskikh populyatsii, Nauka, M., 1974
[14] Moskalenko A. I., Moskalenko R. A., Khamitov G. P., “Modelirovanie vozrastnoi struktury proizvodstvennykh fondov s tochki zreniya zadach upravleniya ekonomicheskimi sistemami”, Optimizatsiya, upravlenie, intellekt, 5(2), IDSTU SO RAN, Irkutsk, 2000, 418–427 | MR
[15] Pilyugin N. N., Tirskii G. A., Dinamika ionizovannogo izluchayuschego gaza, Izd-vo MGU, M., 1989 | Zbl