@article{ZVMMF_2004_44_2_a3,
author = {Yu. S. Volkov},
title = {A new method for constructing cubic interpolating splines},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {231--241},
year = {2004},
volume = {44},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a3/}
}
Yu. S. Volkov. A new method for constructing cubic interpolating splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a3/
[1] Volkov Yu. S., “Novyi sposob postroeniya interpolyatsionnykh kubicheskikh splainov”, Dokl. AN, 382:2 (2002), 155–157 | MR | Zbl
[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[3] de Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl
[4] de Boor C., Pinkus A., “Backward error analysis for totally positive linear systems”, Numer. Math., 27:4 (1977), 485–490 | DOI | MR | Zbl
[5] de Boor C., “On cubic spline functions that vanish at all knots”, Advances Math., 13 (1976), 1–17 | MR
[6] Volkov Yu. S., “O postroenii interpolyatsionnykh polinomialnykh splainov”, Splain-funktsii i ikh prilozh., Vychisl. sistemy, 159, IM SO RAN, Novosibirsk, 1997, 3–18 | MR
[7] Miroshnichenko V. L., “Convex and monotone spline interpolation”, Constructive Theory of Function'84, Proc. Internal. Conf. (Varna), Publishing House Bulgarian Acad. Sci., Sofia, 1984, 610–620
[8] Pinchukov V. I., “Monotonnyi nelokalnyi kubicheskii splain”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 200–206 | MR | Zbl
[9] Miroshnichenko V. L., “Sufficient conditions for monotonicity and convexity of cubic splines of class $C^2$”, Siberian Advances Math., 2:4 (1992), 147–163 | MR