On everywhere differentiable semi-classical approximations to generalized spherical harmonics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 2, pp. 318-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_2_a10,
     author = {V. V. Samarin and S. M. Samarina},
     title = {On everywhere differentiable semi-classical approximations to generalized spherical harmonics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {318--328},
     year = {2004},
     volume = {44},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a10/}
}
TY  - JOUR
AU  - V. V. Samarin
AU  - S. M. Samarina
TI  - On everywhere differentiable semi-classical approximations to generalized spherical harmonics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 318
EP  - 328
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a10/
LA  - ru
ID  - ZVMMF_2004_44_2_a10
ER  - 
%0 Journal Article
%A V. V. Samarin
%A S. M. Samarina
%T On everywhere differentiable semi-classical approximations to generalized spherical harmonics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 318-328
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a10/
%G ru
%F ZVMMF_2004_44_2_a10
V. V. Samarin; S. M. Samarina. On everywhere differentiable semi-classical approximations to generalized spherical harmonics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 2, pp. 318-328. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_2_a10/

[1] Vigner E., Teoriya grupp, Izd-vo inostr. lit., M., 1961

[2] Metyuz Dzh., Uoker R., Matematicheskie metody fiziki, Atomizdat, M., 1972 | MR

[3] Davydov A. S., Kvantovaya mekhanika, Nauka, M., 1973 | MR

[4] Preston M., Fizika yadra, Mir, M., 1964

[5] Tolmachev V. V., Kvaziklassicheskoe priblizhenie v kvantovoi mekhanike, Izd-vo MGU, M., 1980

[6] Matrosov A., Maple 6. Reshenie zadach vysshei matematiki i mekhaniki, BKhV-Peterburg, SPb., 2001

[7] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[8] Samarin V. V., Samarina S. M., “O vsyudu differentsiruemykh kvaziklassicheskikh priblizheniyakh sfericheskikh funktsii”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 351–352 ; Деп. в ВИНИТИ No 2418-В00, 2000 | MR | Zbl | Zbl

[9] Konyukhova N. B., Lin V. Kh., Staroverova I. B., “O modifikatsiyakh fazovogo metoda v singulyarnykh zadachakh kvantovoi fiziki”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 492–522 | MR | Zbl

[10] Samarin V. V., Samarina S. M., “Regulyarizovannoe kvaziklassicheskoe priblizhenie v kvantovoi mekhanike”, Zh. vychisl. matem. i matem. fiz., 41:7 (2001), 1099–1105 | MR | Zbl

[11] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i tablitsami, Nauka, M., 1979 | MR

[12] Dyakonov V., MathCAD 2000, uchebnyi kurs, Piter, SPb., 2001