Dynamic programming algorithms for analysis of non-stationary signals
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 1, pp. 70-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_1_a6,
     author = {A. O. Kostin and O. V. Krasotkina and M. V. Markov and V. V. Mottl' and I. B. Muchnik},
     title = {Dynamic programming algorithms for analysis of non-stationary signals},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {70--86},
     year = {2004},
     volume = {44},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a6/}
}
TY  - JOUR
AU  - A. O. Kostin
AU  - O. V. Krasotkina
AU  - M. V. Markov
AU  - V. V. Mottl'
AU  - I. B. Muchnik
TI  - Dynamic programming algorithms for analysis of non-stationary signals
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 70
EP  - 86
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a6/
LA  - ru
ID  - ZVMMF_2004_44_1_a6
ER  - 
%0 Journal Article
%A A. O. Kostin
%A O. V. Krasotkina
%A M. V. Markov
%A V. V. Mottl'
%A I. B. Muchnik
%T Dynamic programming algorithms for analysis of non-stationary signals
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 70-86
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a6/
%G ru
%F ZVMMF_2004_44_1_a6
A. O. Kostin; O. V. Krasotkina; M. V. Markov; V. V. Mottl'; I. B. Muchnik. Dynamic programming algorithms for analysis of non-stationary signals. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 1, pp. 70-86. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a6/

[1] Albert A., Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977 | MR

[2] Rabiner L., Juang B. H., Fundamentals of speech recognition, New York, 1993

[3] Mottl B. B., Muchnik I. B., Skrytye markovskie modeli v strukturnom analize signalov, Nauka, M., 1999

[4] Rabiner L., “Hidden Markov models and selected applications to speech recognition”, Proc. IEEE, 77:2 (1989), 86–120 | DOI

[5] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, N. Y., 1957 | MR | Zbl

[6] Sniedovich M., Dynamic programming, Marcel Dekker, New York, 1991 | MR

[7] Bucy R. S., Optimum finite time filters for a special non-stationary class of inputs, Internal Rept Nr. BBD-600, Jons Hopkins Univ., Appl. Phys. Lab., 1959

[8] Kalman R. E., “A new approach to linear filtering and prediction problems”, Trans. ASME. Ser. D. J. Basic Engng., 82, 1960, 35–45; Kalman P. E., Byusi R. S., “Novye rezultaty v lineinoi filtratsii i teorii predskazaniya”, Tekhn. mekhan. Ser. D, 83 (1961) | MR

[9] Brammer K., Ziffling G., Filtr Kalmana-Byusi, Nauka, M., 1982

[10] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[11] Boks Dzh., Dzhenkins G., Analiz vremennykh ryadov. Prognoz i upravlenie, v. 1, 2, Mir, M., 1974

[12] Cohen L., Time-frequency analysis, Prentice Hall, Englewood Cliffs, N. J., 1995

[13] Vapnik V. H., Vosstanovlenie zavisimostei po empiricheskim dannym, Nauka, M., 1979 | MR | Zbl

[14] Niedzwiecki M., Sethares W. A., “Smoothing of discontinuous signals: The competitive approach”, IEEE Trans. Signal Proc., 43:1 (1995), 1–13 | DOI

[15] Pitas I., Venetsanopoulos A. N., Nonlinear digital filters. Principles and applications, Kluwer Acad. Publs., Boston, 1990 | Zbl