@article{ZVMMF_2004_44_1_a6,
author = {A. O. Kostin and O. V. Krasotkina and M. V. Markov and V. V. Mottl' and I. B. Muchnik},
title = {Dynamic programming algorithms for analysis of non-stationary signals},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {70--86},
year = {2004},
volume = {44},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a6/}
}
TY - JOUR AU - A. O. Kostin AU - O. V. Krasotkina AU - M. V. Markov AU - V. V. Mottl' AU - I. B. Muchnik TI - Dynamic programming algorithms for analysis of non-stationary signals JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2004 SP - 70 EP - 86 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a6/ LA - ru ID - ZVMMF_2004_44_1_a6 ER -
%0 Journal Article %A A. O. Kostin %A O. V. Krasotkina %A M. V. Markov %A V. V. Mottl' %A I. B. Muchnik %T Dynamic programming algorithms for analysis of non-stationary signals %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2004 %P 70-86 %V 44 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a6/ %G ru %F ZVMMF_2004_44_1_a6
A. O. Kostin; O. V. Krasotkina; M. V. Markov; V. V. Mottl'; I. B. Muchnik. Dynamic programming algorithms for analysis of non-stationary signals. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 1, pp. 70-86. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a6/
[1] Albert A., Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977 | MR
[2] Rabiner L., Juang B. H., Fundamentals of speech recognition, New York, 1993
[3] Mottl B. B., Muchnik I. B., Skrytye markovskie modeli v strukturnom analize signalov, Nauka, M., 1999
[4] Rabiner L., “Hidden Markov models and selected applications to speech recognition”, Proc. IEEE, 77:2 (1989), 86–120 | DOI
[5] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, N. Y., 1957 | MR | Zbl
[6] Sniedovich M., Dynamic programming, Marcel Dekker, New York, 1991 | MR
[7] Bucy R. S., Optimum finite time filters for a special non-stationary class of inputs, Internal Rept Nr. BBD-600, Jons Hopkins Univ., Appl. Phys. Lab., 1959
[8] Kalman R. E., “A new approach to linear filtering and prediction problems”, Trans. ASME. Ser. D. J. Basic Engng., 82, 1960, 35–45; Kalman P. E., Byusi R. S., “Novye rezultaty v lineinoi filtratsii i teorii predskazaniya”, Tekhn. mekhan. Ser. D, 83 (1961) | MR
[9] Brammer K., Ziffling G., Filtr Kalmana-Byusi, Nauka, M., 1982
[10] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975
[11] Boks Dzh., Dzhenkins G., Analiz vremennykh ryadov. Prognoz i upravlenie, v. 1, 2, Mir, M., 1974
[12] Cohen L., Time-frequency analysis, Prentice Hall, Englewood Cliffs, N. J., 1995
[13] Vapnik V. H., Vosstanovlenie zavisimostei po empiricheskim dannym, Nauka, M., 1979 | MR | Zbl
[14] Niedzwiecki M., Sethares W. A., “Smoothing of discontinuous signals: The competitive approach”, IEEE Trans. Signal Proc., 43:1 (1995), 1–13 | DOI
[15] Pitas I., Venetsanopoulos A. N., Nonlinear digital filters. Principles and applications, Kluwer Acad. Publs., Boston, 1990 | Zbl