@article{ZVMMF_2004_44_1_a14,
author = {I. A. Graur},
title = {Splitting finite difference schemes for {Euler} equations based on quasi-gas dynamics equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {166--178},
year = {2004},
volume = {44},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a14/}
}
TY - JOUR AU - I. A. Graur TI - Splitting finite difference schemes for Euler equations based on quasi-gas dynamics equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2004 SP - 166 EP - 178 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a14/ LA - ru ID - ZVMMF_2004_44_1_a14 ER -
%0 Journal Article %A I. A. Graur %T Splitting finite difference schemes for Euler equations based on quasi-gas dynamics equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2004 %P 166-178 %V 44 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a14/ %G ru %F ZVMMF_2004_44_1_a14
I. A. Graur. Splitting finite difference schemes for Euler equations based on quasi-gas dynamics equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 1, pp. 166-178. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_1_a14/
[1] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidromekhanika i teploobmen, v. 2, Mir, M., 1990 | Zbl
[2] Harten A., “Hight resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[3] Steger J. L., Warming R. F., “Flux vector spliting of the inviscid gasdynamic equations with application to finite-difference methods”, J. Comput. Phys., 40 (1981), 263–293 | DOI | MR | Zbl
[4] van Leer B., “Flux-vector spliting fot the Euler equations”, Lect. Notes Phys., 170, 1982, 507–512
[5] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[6] Roe P. L., “Approximate Rieman solver, parameter vectors and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[7] Elizarova T. G., Sheretov Yu. V., “Teoreticheskoe i chislennoe issledovanie kvazigazodinamicheskikh i kvazigidrodinamicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:2 (2001), 239–255 | MR | Zbl
[8] Sheretov Yu. V., “Kvazigidrodinamicheskie uravneniya kak model techenii szhimaemoi vyazkoi teploprovodnoi sredy”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Tverskoi gos. un-t, Tver, 1997, 127–155
[9] Elizarova T. G., Chetverushkin B. N., “Ob odnom vychislitelnom algoritme dlya rascheta gazodinamicheskikh techenii”, Dokl. AN SSSR, 279:1 (1984), 80–83 | Zbl
[10] Graur I. A., “Metod rasschepleniya dlya resheniya uravnenii Eilera”, Zh. vychisl. matem. i matem. fiz., 41:10 (2001), 1608–1621 | MR
[11] Graur I. A., “Algoritmy chislennogo resheniya kvazigazodinamicheskikh uravnenii vtorogo poryadka tochnosti”, Zh. vychisl. matem. i matem. fiz., 42:5 (2002), 698–708 | MR | Zbl
[12] Sod G., “A survay of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comput. Phys., 27 (1978), 1–31 | DOI | MR | Zbl
[13] Enfeldt B., Munz C. D., Roe P. L., Sjogreen B., “On Godunov-type methods near low densities”, J. Comput. Phys., 92 (1991), 273–295 | DOI | MR