Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 12, pp. 2194-2211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_12_a5,
     author = {S. A. Nazarov and M. Specovius-Neugebauer},
     title = {Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2194--2211},
     year = {2004},
     volume = {44},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - M. Specovius-Neugebauer
TI  - Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 2194
EP  - 2211
VL  - 44
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a5/
LA  - ru
ID  - ZVMMF_2004_44_12_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A M. Specovius-Neugebauer
%T Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 2194-2211
%V 44
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a5/
%G ru
%F ZVMMF_2004_44_12_a5
S. A. Nazarov; M. Specovius-Neugebauer. Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 12, pp. 2194-2211. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a5/

[1] Nečas J., Les methodes directes in théorie des équations elliptiques, Masson-Acad., Paris–Prague, 1967

[2] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. matem. analiza, 16, Izd-vo SPbGU, SPb, 1997, 167–192

[3] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl

[4] Tsynkov S. V., “Numerical solution of problems on unbounded domains”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl

[5] Kröner E., “Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen”, Z. Phys., 136 (1953), 402–410 | DOI | MR

[6] Nazarov S. A., Shpekovius-Noigebauer M., “Iskusstvennye kraevye usloviya dlya ellipticheskikh sistem v oblastyakh s konicheskimi vykhodami na beskonechnost”, Dokl. RAN, 377:3 (2001), 317–320 | MR

[7] Nazarov S. A., Specovius-Neugebauer M., “Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type”, Math. Meth. Appl. Sci., 27 (2004), 1507–1544 | DOI | MR | Zbl

[8] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2002 | Zbl

[9] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[10] Nazarov S. A., “Asymptotics of the solution to the Neumann problem in a domain with singular point of peak exterior type”, Rus. J. Math. Phys., 4:2 (1996), 217–250 | MR | Zbl

[11] Arutyunyan H. X., Movchan A. B., Nazarov S. A., “Povedenie reshenii zadach teorii uprugosti v neogranichennykh oblastyakh s paraboloidalnymi i tsilindricheskimi vklyucheniyami i polostyami”, Uspekhi mekhan., 1987, no. 4, 3–91 | MR

[12] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1963, 219–292

[13] Pazy A., “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Ration Mech. and Analys., 24:2 (1967), 193–218 | DOI | MR | Zbl

[14] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[15] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, Izd-vo TGU, Tbilisi, 1981

[16] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[17] Nazarov S. A., “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Tr. Sankt-Peterburgskogo matem. ob-va, 5, 1996, 112–183

[18] Kamotskii I. V., Nazarov S. A., “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. Sankt-Peterburgskogo matem. ob-va, 6, 1998, 151–212 | MR

[19] Roitberg Ya. A., Sheftel Z. G., “Obschie granichnye zadachi dlya ellipticheskikh uravnenii s razryvnymi koeffitsientami”, Dokl. AN SSSR, 148:5 (1963), 1034–1037 | MR

[20] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[21] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 1: Zadacha v konuse”, Sibirskii matem. zhurnal, 22:4 (1981), 142–163 | MR | Zbl

[22] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle v uglovoi oblasti s periodicheski izmenyayuscheisya granitsei”, Matem. zametki, 49:5 (1991), 86–96 | MR | Zbl

[23] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno-gladkoi granitsei”, Tr. Leningr. matem. ob-va, 1, 1990, 174–211 | MR

[24] Nazarov S. A., Specovius-Neugebauer M., “Approximation of exterior problems. Optimal conditions for the Laplacian”, Analysis, 16:4 (1996), 305–324 | MR | Zbl

[25] Nazarov S. A., Shpekovius-Noigebauer M., “Approksimatsiya neogranichennykh oblastei ogranichennymi. Kraevye zadachi dlya operatora Lame”, Algebra i analiz, 8:5 (1996), 229–268 | MR