@article{ZVMMF_2004_44_12_a5,
author = {S. A. Nazarov and M. Specovius-Neugebauer},
title = {Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2194--2211},
year = {2004},
volume = {44},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a5/}
}
TY - JOUR AU - S. A. Nazarov AU - M. Specovius-Neugebauer TI - Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2004 SP - 2194 EP - 2211 VL - 44 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a5/ LA - ru ID - ZVMMF_2004_44_12_a5 ER -
%0 Journal Article %A S. A. Nazarov %A M. Specovius-Neugebauer %T Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2004 %P 2194-2211 %V 44 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a5/ %G ru %F ZVMMF_2004_44_12_a5
S. A. Nazarov; M. Specovius-Neugebauer. Artificial boundary conditions for external boundary problem with a cylindrical inhomogeneity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 12, pp. 2194-2211. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a5/
[1] Nečas J., Les methodes directes in théorie des équations elliptiques, Masson-Acad., Paris–Prague, 1967
[2] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. matem. analiza, 16, Izd-vo SPbGU, SPb, 1997, 167–192
[3] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[4] Tsynkov S. V., “Numerical solution of problems on unbounded domains”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl
[5] Kröner E., “Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen”, Z. Phys., 136 (1953), 402–410 | DOI | MR
[6] Nazarov S. A., Shpekovius-Noigebauer M., “Iskusstvennye kraevye usloviya dlya ellipticheskikh sistem v oblastyakh s konicheskimi vykhodami na beskonechnost”, Dokl. RAN, 377:3 (2001), 317–320 | MR
[7] Nazarov S. A., Specovius-Neugebauer M., “Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type”, Math. Meth. Appl. Sci., 27 (2004), 1507–1544 | DOI | MR | Zbl
[8] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2002 | Zbl
[9] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[10] Nazarov S. A., “Asymptotics of the solution to the Neumann problem in a domain with singular point of peak exterior type”, Rus. J. Math. Phys., 4:2 (1996), 217–250 | MR | Zbl
[11] Arutyunyan H. X., Movchan A. B., Nazarov S. A., “Povedenie reshenii zadach teorii uprugosti v neogranichennykh oblastyakh s paraboloidalnymi i tsilindricheskimi vklyucheniyami i polostyami”, Uspekhi mekhan., 1987, no. 4, 3–91 | MR
[12] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1963, 219–292
[13] Pazy A., “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Ration Mech. and Analys., 24:2 (1967), 193–218 | DOI | MR | Zbl
[14] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991
[15] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, Izd-vo TGU, Tbilisi, 1981
[16] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[17] Nazarov S. A., “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Tr. Sankt-Peterburgskogo matem. ob-va, 5, 1996, 112–183
[18] Kamotskii I. V., Nazarov S. A., “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. Sankt-Peterburgskogo matem. ob-va, 6, 1998, 151–212 | MR
[19] Roitberg Ya. A., Sheftel Z. G., “Obschie granichnye zadachi dlya ellipticheskikh uravnenii s razryvnymi koeffitsientami”, Dokl. AN SSSR, 148:5 (1963), 1034–1037 | MR
[20] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[21] Nazarov S. A., “Metod Vishika–Lyusternika dlya ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami. 1: Zadacha v konuse”, Sibirskii matem. zhurnal, 22:4 (1981), 142–163 | MR | Zbl
[22] Nazarov S. A., “Asimptotika resheniya zadachi Dirikhle v uglovoi oblasti s periodicheski izmenyayuscheisya granitsei”, Matem. zametki, 49:5 (1991), 86–96 | MR | Zbl
[23] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno-gladkoi granitsei”, Tr. Leningr. matem. ob-va, 1, 1990, 174–211 | MR
[24] Nazarov S. A., Specovius-Neugebauer M., “Approximation of exterior problems. Optimal conditions for the Laplacian”, Analysis, 16:4 (1996), 305–324 | MR | Zbl
[25] Nazarov S. A., Shpekovius-Noigebauer M., “Approksimatsiya neogranichennykh oblastei ogranichennymi. Kraevye zadachi dlya operatora Lame”, Algebra i analiz, 8:5 (1996), 229–268 | MR