@article{ZVMMF_2004_44_12_a4,
author = {V. D. Liseikin},
title = {Universal elliptic method for adaptive grid generation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2167--2193},
year = {2004},
volume = {44},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a4/}
}
V. D. Liseikin. Universal elliptic method for adaptive grid generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 12, pp. 2167-2193. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_12_a4/
[1] Warsi Z. U. A., Tensors and differential geometry applied to analytical and numerical coordinate generation, MSSU-EIRS-81-1, Aerospace Engng., Starkville, 1981
[2] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation. Foundations and applications, Elsevier Sci. Publ., New York, 1985 | MR | Zbl
[3] Liseikin V. D., Grid generation methods, Springer, Berlin, 1999 | MR | Zbl
[4] Liseikin V. D., Layer resolving grids and transformations for singular perturbation problems, VSP, Utrecht, 2001
[5] Liseikin V. D., A computational differential geometry approach to grid generation, Springer, Berlin, 2003 | MR | Zbl
[6] Godunov S. K., Prokopov G. P., “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1031–1059 | MR | Zbl
[7] Liseikin V. D., “O geometricheskikh metodakh v teorii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1035–1048 | MR | Zbl
[8] Liseikin V. D., “Application of notions and relations of differential geometry to grid generation”, Rus. J. Numer. Analys. Math. Modelling, 16:1 (2001), 57–75 | MR | Zbl
[9] Liseikin V. D., “O postroenii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1670–1689 | MR
[10] Dvinsky A. S., “Adaptive grid generation from harmonic maps on Riemannian manifolds”, J. Comput. Phys., 95 (1991), 450–476 | DOI | MR | Zbl
[11] Winslow A. M., “Equipotential zoning of two-dimensional meshes”, J. Comput. Phys., 1 (1967), 149–172 | DOI | MR
[12] Warsi Z. U. A., “Numerical grid generation in arbitrary surfaces through a second-order differential-geometric model”, J. Comput. Phys., 64 (1986), 82–96 | DOI | MR | Zbl
[13] Danaev H. T., Liseikin V. D., Yanenko N. N., “O chislennom raschete dvizheniya vyazkogo gaza vokrug tela vrascheniya na podvizhnoi setke”, Chisl. metody mekhan. sploshnoi sredy, 11, no. 1, VTs SO AN SSSR, Novosibirsk, 1980, 51–61
[14] Winslow A. M., Adaptive mesh zoning by the equipotential method, UCID-19062, Lawrence Livermore Nat. Labs., Livermore, 1981
[15] Brackbill J. U., Saltzman J., “Adaptive zoning for singular problems in two directions”, J. Comput. Phys., 46 (1982), 342–368 | DOI | MR | Zbl
[16] Azarenok B. N., Ivanenko S. A., “O primenenii adaptivnykh setok dlya chislennogo resheniya nestatsionarnykh zadach gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1386–1407 | MR | Zbl
[17] Garanzha V. A., “Barernyi metod postroeniya kvaziizometricheskikh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl
[18] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:4 (1988), 503–514 | MR
[19] Belinskii P. P., Godunov S. K., Ivanov Yu. V., Yanenko I. K., “Primenenie odnogo klassa kvazikonformnykh otobrazhenii dlya postroeniya raznostnykh setok v oblastyakh s krivolineinymi granitsami”, Zh. vychisl. matem. i matem. fiz., 15:6 (1975), 1499–1511 | MR
[20] Godunov S. K., Romenskii E. I., Chumakov G. A., “Postroenie setok v slozhnykh oblastyakh s pomoschyu kvazikonformnykh otobrazhenii”, Tr. In-ta matem., 18, Nauka, Novosibirsk, 1990, 75–84 | MR
[21] Glasser A. M., Jardin S. C., Tesauro G., “Numerical solution of the resistive inner region equations”, Phys. Fluids, 27:5 (1984), 1225 | DOI | MR | Zbl