A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 11, pp. 2001-2019 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_11_a8,
     author = {M. I. Sumin},
     title = {A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2001--2019},
     year = {2004},
     volume = {44},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_11_a8/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 2001
EP  - 2019
VL  - 44
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_11_a8/
LA  - ru
ID  - ZVMMF_2004_44_11_a8
ER  - 
%0 Journal Article
%A M. I. Sumin
%T A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 2001-2019
%V 44
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_11_a8/
%G ru
%F ZVMMF_2004_44_11_a8
M. I. Sumin. A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 11, pp. 2001-2019. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_11_a8/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[2] A. N. Tikhonov, A. V. Goncharskii (red.), Nekorrektnye zadachi estestvoznaniya, Izd-vo MGU, M., 1987

[3] Bek Dzh., Blakuell B., Sent-Kler Ch., Nekorrektnye obratnye zadachi teploprovodnosti, Mir, M., 1989

[4] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl

[5] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[6] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[7] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989

[8] Errou K. Dzh., Gurvits L., Udzava Kh., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, Izd-vo inostr. lit., M., 1962

[9] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990 | MR

[10] Krnich I., Potapov M. M., “Proektsionnaya istokopredstavimost normalnykh reshenii lineinykh uravnenii na vypuklykh mnozhestvakh”, Zh. vychisl. matem. i matem. fiz., 41:9 (2001), 1315–1323 | MR

[11] Bakushinskii A. B., “O skorosti skhodimosti algoritmov iterativnoi regulyarizatsii dlya resheniya lineinykh zadach s vypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 933–936 | MR

[12] Sumin M. I., “Iterativnaya regulyarizatsiya gradientnogo dvoistvennogo metoda dlya resheniya integralnogo uravneniya Fredgolma pervogo roda”, Vestn. Nizhegorodskogo un-ta. Ser. Matematika, 2, Izd-vo NNGU, Nizhnii Novgorod, 2004, 193–209

[13] Vasilev F. P., Ishmukhametov A. Z., Potapov M. M., Obobschennyi metod momentov v zadachakh optimalnogo upravleniya, Izd-vo MGU, M., 1989 | MR

[14] Ishmukhametov A. Z., “Dvoistvennyi regulyarizovannyi metod v zadachakh upravleniya sistemami s raspredelennymi parametrami”, Raspredelennye sistemy: optimizatsiya i prilozh. v ekonomike i naukakh ob okruzhayuschei srede, Izd-vo In-ta matem. i mekhan. UrO RAN, Ekaterinburg, 2000, 83–86

[15] Ishmukhametov A. Z., “Dvoistvennyi regulyarizovannyi metod resheniya odnogo klassa vypuklykh zadach minimizatsii”, Zh. vychisl. matem. i matem. fiz., 40:7 (2000), 1045–1060 | MR | Zbl

[16] Potapov M. M., “Ob ustoichivom metode resheniya operatornogo uravneniya pri nalichii ogranicheniya”, Dokl. AN SSSR, 313:6 (1990), 1352–1355 | MR | Zbl

[17] Sumin M. I., “Optimalnoe upravlenie parabolicheskimi uravneniyami: dvoistvennye chislennye metody, regulyarizatsiya”, Raspredelennye sistemy: optimizatsiya i prilozh. v ekonomike i naukakh ob okruzhayuschei srede, Izd-vo In-ta matem. i mekhan. UrO RAN, Ekaterinburg, 2000, 66–69

[18] Sumin M. I., Matematicheskaya teoriya suboptimalnogo upravleniya raspredelennymi sistemami, Dis. ...dokt. fiz.-matem. nauk, Nizhegorodskii gos. un-t, Nizhnii Novgorod, 2000

[19] Sumin M. I., “Printsip maksimuma v teorii suboptimalnogo upravleniya raspredelennymi sistemami s operatornymi ogranicheniyami v gilbertovom prostranstve”, Itogi nauki i tekhn. Sovrem. matem. i ee prilozh. Tematich. obzory, 66, VINITI, 1999, 193–235 | MR

[20] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[21] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[22] Potapov M. M., “Ustoichivyi metod resheniya lineinykh uravnenii s neravnomerno vozmuschennym operatorom”, Dokl. RAN, 365:5 (1999), 596–598 | MR | Zbl

[23] Sumin M. I., “Iterativnaya regulyarizatsiya gradientnogo dvoistvennogo metoda resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Vestn. Tambovskogo un-ta. Ser. estestv. i tekhn. nauk, 8, no. 3, Izd-vo Tambovskogo un-ta, Tambov, 2003, 460–461

[24] Sumin M. I., “Regulyarizovannyi algoritm Udzavy dlya resheniya parametricheskoi zadachi optimalnogo upravleniya parabolicheskim uravneniem”, Algoritmich. analiz neustoichivykh zadach, Izd-vo Uralskogo un-ta, Ekaterinburg, 2004, 226–227

[25] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[26] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[27] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[28] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | MR | Zbl

[29] Kuzenkov O. A., Plotnikov V. I., “Suschestvovanie i edinstvennost obobschennogo resheniya lineinogo vektornogo uravneniya parabolicheskogo tipa v tretei kraevoi zadache”, Matem. modelirovanie i metody optimizatsii, Izd-vo GGU, Gorkii, 1989, 132–144 | MR

[30] Sumin M. I., “Suboptimal control of systems with distributed parameters: minimizing sequences, value function, regularity, normality”, Control and Cybernetics, 25:3 (1996), 529–552 | MR | Zbl

[31] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[32] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[33] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in banach space. Part I: Theory”, Canadian J. Math., 38:2 (1986), 431–452 ; “Part II: Applications”, 39:2 (1987), 428–472 | DOI | MR | Zbl | DOI | MR | Zbl

[34] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[35] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[36] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[37] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[38] Plotnikov V. I., “O skhodimosti konechnomernykh priblizhenii (v zadache ob optimalnom nagreve neodnorodnogo tela proizvolnoi formy)”, Zh. vychisl. matem. i matem. fiz., 8:1 (1968), 136–157 | MR | Zbl

[39] Plotnikov V. I., “Energeticheskoe neravenstvo i svoistvo pereopredelennosti sistemy sobstvennykh funktsii”, Izv. AN SSSR. Ser. Matematika, 32:4 (1968), 743–755 | MR | Zbl