The combinatorial substantiation of learning algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 11, pp. 2099-2112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_11_a15,
     author = {K. V. Vorontsov},
     title = {The combinatorial substantiation of learning algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2099--2112},
     year = {2004},
     volume = {44},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_11_a15/}
}
TY  - JOUR
AU  - K. V. Vorontsov
TI  - The combinatorial substantiation of learning algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 2099
EP  - 2112
VL  - 44
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_11_a15/
LA  - ru
ID  - ZVMMF_2004_44_11_a15
ER  - 
%0 Journal Article
%A K. V. Vorontsov
%T The combinatorial substantiation of learning algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 2099-2112
%V 44
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_11_a15/
%G ru
%F ZVMMF_2004_44_11_a15
K. V. Vorontsov. The combinatorial substantiation of learning algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 11, pp. 2099-2112. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_11_a15/

[1] Kohavi R., “A study of cross-validation and bootstrap for accuracy estimation and model selection”, IJCAI, 1995, 1137–1145

[2] Vapnik V. H., Vosstanovlenie zavisimostei po empiricheskim dannym, Nauka, M., 1979 | MR | Zbl

[3] Vorontsov K. V., “Kombinatornye otsenki kachestva obucheniya po pretsedentam”, Dokl. RAN, 394:2 (2004), 175–178 | MR | Zbl

[4] Zhuravlev Yu. I., Rudakov K. V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Probl. prikl. matem. i informatiki, 1987, 187–198 | MR | Zbl

[5] Vapnik V. N., Statistical learning theory, Wiley, New York, 1998 | MR | Zbl

[6] Karpinski M., Macintyre A., “Polynomial bounds for $\mathrm{VC}$ dimension of sigmoidal neural networks”, 27th ACM Symp. Theor. Comput., Las Vegas, 1995, 200–208 | Zbl

[7] Dyulicheva Yu. Yu., “Otsenka $\mathrm{VCD}$ $r$-redutsirovannogo empiricheskogo lesa”, Tavrich. vestn. informatiki i matem., 2003, no. 1, 31–42 | Zbl

[8] Matrosov V. L., “Emkost algebraicheskikh rasshirenii modeli algoritmov vychisleniya otsenok”, Zh. vychisl. matem. i matem. fiz., 24:11 (1984), 1719–1730 | MR | Zbl

[9] Mazurov V., Khachai M., Rybin A., “Committee constructions for solving problems of selection, diagnostics and prediction”, Proc. Inst. Math., M., 2002, 67–101 | MR

[10] Kearns M. J., Mansour Y., Ng A. Y., Ron D., “An experimental and theoretical comparison of model selection methods”, 8th Conf. Comput. Learning Theor., Santa Cruz, 1995, 21–30

[11] Ivakhnenko A. G., Yurachkovskii Yu. P., Modelirovanie slozhnykh sistem po eksperimentalnym dannym, Radio i svyaz, M., 1987

[12] Mason L., Bartlett P., Baxter J., Direct optimization of margins improves generalization in combined classifiers, Techn. Rept., Dept. Systems Engng. Australian Nat. Univ., 1998

[13] Schapire R. E., Freund Y., Lee W. S., Bartlett P., “Boosting the margin: a new explanation for the effectiveness of voting methods”, Ann. Stat., 26:5 (1998), 1651–1686 | DOI | MR | Zbl

[14] Breiman L., “Bagging predictors”, Mach. Learning, 24:2 (1996), 123–140 | MR | Zbl

[15] Vorontsov K. V., “Kachestvo vosstanovleniya zavisimostei po empiricheskim dannym”, Matem. metody raspoznavaniya obrazov, VII Vseros. konf., Tezisy dokl., Puschino, 1995, 24–26

[16] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. I; II; III”, Kibernetika, 1977, no. 4, 5–17; 1977, No 6, 21–27 ; 1978, No 2, 35–43 | Zbl | Zbl

[17] Rissanen J., “Modeling by shortest data description”, Automatica, 14 (1978), 465–471 | DOI | Zbl

[18] Vapnik V., Levin E., Cun Y. L., “Measuring the $\mathrm{VC}$-dimension of a learning machine”, Neural Comput., 6:5 (1994), 851–876 | DOI

[19] Bousquet O., Elisseeff A., “Stability and generalization”, J. Mach. Learning Res., 2002, no. 2, 499–526 | DOI | MR | Zbl

[20] Bartlett P., “The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network”, IEEE Trans. Informat Theor., 44:2 (1998), 525–536 | DOI | MR | Zbl

[21] Rudakov K. V., “Universalnye i lokalnye ogranicheniya v probleme korrektsii evristicheskikh algoritmov”, Kibernetika, 1987, no. 2, 30–35 | MR

[22] Vorontsov K. V., “Otsenka kachestva monotonnogo reshayuschego pravila vne obuchayuschei vyborki”, Intellektualizatsiya obrabotki inf., Tezisy dokl., Simferopol, 2002, 24–26

[23] Semochkin A. N., Otsenki funktsionala kachestva dlya klassa algoritmov s universalnymi ogranicheniyami monotonnosti, Dep. v VINITI, No 2965-V98, 1998, 20 pp.

[24] Sill J., “The capacity of monotonic functions”, Discrete Appl. Math., 86, special issue on VC dimension (1998), 95–107 | DOI | MR | Zbl