Multiphase models of nonstationary diffusion in homogenization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 10, pp. 1829-1844 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2004_44_10_a9,
     author = {G. V. Sandrakov},
     title = {Multiphase models of nonstationary diffusion in homogenization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1829--1844},
     year = {2004},
     volume = {44},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_10_a9/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Multiphase models of nonstationary diffusion in homogenization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2004
SP  - 1829
EP  - 1844
VL  - 44
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_10_a9/
LA  - ru
ID  - ZVMMF_2004_44_10_a9
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Multiphase models of nonstationary diffusion in homogenization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2004
%P 1829-1844
%V 44
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_10_a9/
%G ru
%F ZVMMF_2004_44_10_a9
G. V. Sandrakov. Multiphase models of nonstationary diffusion in homogenization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 44 (2004) no. 10, pp. 1829-1844. http://geodesic.mathdoc.fr/item/ZVMMF_2004_44_10_a9/

[1] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[2] Nigmatulin R. I., Dinamika mnogofaznykh sred, v. I, Nauka, M., 1980 | Zbl

[3] Sandrakov G. V., “Printsipy osredneniya uravnenii s bystroostsilliruyuschimi koeffitsientami”, Matem. sbornik, 180:12 (1989), 1643–1690

[4] Sandrakov G. V., “Osrednenie sistemy uravnenii teorii uprugosti s kontrastnymi koeffitsientami”, Matem. sbornik, 190:12 (1999), 37–92 | MR | Zbl

[5] Sandrakov G. V., “Diffuziya v silno neodnorodnoi periodicheskoi srede”, Uspekhi matem. nauk, 51:5 (1996), 208–209

[6] Sandrakov G. V., “Osrednenie nestatsionarnykh uravnenii s kontrastnymi koeffitsientami”, Dokl. RAN, 355:5 (1997), 605–608 | MR | Zbl

[7] Sandrakov G. V., “Osrednenie nestatsionarnykh zadach teorii silno neodnorodnykh uprugikh sred”, Dokl. RAN, 358:3 (1998), 308–311 | MR | Zbl

[8] Sandrakov G. V., “Osrednenie dinamicheskikh zadach teorii uprugosti s silno izmenyayuschimisya koeffitsientami”, Dokl. RAN, 362:4 (1998), 449–452 | MR | Zbl

[9] Sandrakov G. V., “Osrednenie parabolicheskikh uravnenii s kontrastnymi koeffitsientami”, Izv. RAN. Ser. matem., 63:5 (1999), 179–224 | MR | Zbl

[10] Sandrakov G. V., “Osrednenie dinamicheskikh protsessov v kompozitakh, periodicheski armirovannykh voloknami”, Dokl. RAN, 372:2 (2000), 161–164 | MR | Zbl

[11] Sandrakov G. V., “Vliyanie vyazkosti na ostsillyatsionnye yavleniya v linearizovannoi gidrodinamike”, Dokl. RAN, 386:5 (2002), 541–544 | MR

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[13] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[14] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[15] Bakhvalov N. S., Eglit M. E., “O predelnom povedenii periodicheskikh sred s myagkomodulnymi vklyucheniyami”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 905–917 | MR | Zbl

[16] Sandrakov G. V., Osrednenie nestatsionarnykh uravnenii s silno izmenyayuschimisya koeffitsientami, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1998

[17] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl