@article{ZVMMF_2003_43_9_a8,
author = {E. A. Volkov and A. K. Kornoukhov},
title = {On solving the {Motz} problem by a~block method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1385--1391},
year = {2003},
volume = {43},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a8/}
}
TY - JOUR AU - E. A. Volkov AU - A. K. Kornoukhov TI - On solving the Motz problem by a block method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 1385 EP - 1391 VL - 43 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a8/ LA - ru ID - ZVMMF_2003_43_9_a8 ER -
E. A. Volkov; A. K. Kornoukhov. On solving the Motz problem by a block method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 9, pp. 1385-1391. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a8/
[1] Motz H., “The treatment of singularities of partial differential equations by relaxation methods”, Quart. Appl. Math., 4:4 (1946), 371–377 | MR
[2] Whiteman J. R., Papamichael N., “Treatment of harmonic mixed boundary problems by conformal transformation methods”, Z. angew. Math. und Phys., 23 (1972), 655–664 | DOI | Zbl
[3] Li Z.-C., Mathon R., Sermer P., “Boundary methods for solving elliptic problems with singularities and interfaces”, SIAM J. Numer. Analys., 24:3 (1987), 487–498 | DOI | MR | Zbl
[4] Lucas T. R., Oh H. S., “The method of auxiliary mapping for the finite element solutions of elliptic problems containing singularities”, J. Comput. Phys., 108:2 (1993), 327–342 | DOI | MR | Zbl
[5] Dosiyev A. A., “A fourth order accurate composite method for solving Laplace's boundary value problems with singularities”, Zh. vychisl. matem. i matem. fiz., 42:6 (2002), 867–874 | MR
[6] Volkov E. A., “Bystro skhodyaschiisya metod kvadratur resheniya uravneniya Laplasa na mnogougolnikakh”, Dokl. AN SSSR, 238:5 (1978), 1036–1039 | MR | Zbl
[7] Volkov E. A., “Eksponentsialno skhodyaschiisya metod resheniya uravneniya Laplasa na mnogougolnikakh”, Matem. sb., 109:3 (1979), 323–354 | MR | Zbl
[8] Volkov E. A., “Priblizhennoe reshenie blochnym metodom uravneniya Laplasa na mnogougolnikakh pri analiticheskikh smeshannykh kraevykh usloviyakh”, Tr. MI RAN, 201, M., 1992, 165–185 | Zbl
[9] Volkov E. A., Block method for solving the Laplace equation and for constructing conformal mappings, CRC Press Inc., Boca Raton (Florida), 1994 | MR | Zbl
[10] Volkov E. A., “Priblizhennoe konformnoe otobrazhenie blochnym metodom nekotorykh mnogougolnikov na polosu”, Zh. vychisl. matem. i matem. fiz., 27:8 (1987), 1166–1175 | MR
[11] Volkov E. A., Kornoukhov A. K., Yakovleva E. A., “Eksperimentalnoe issledovanie blochnogo metoda resheniya uravneniya Laplasa na mnogougolnikakh”, Zh. vychisl. matem. i matem. fiz., 38:9 (1998), 1544–1552 | MR | Zbl
[12] Volkov E. A., Kornoukhov A. K., “Reshenie blochnym metodom zadachi o kruchenii sterzhnya s $\mathrm{L}$-obraznym secheniem”, Zh. vychisl. matem. i matem. fiz., 42:8 (2002), 1207–1216 | MR | Zbl
[13] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MI AN SSSR, 77, M., 1965, 113–142 | Zbl
[14] Volkov E. A., “Priblizhennyi metod konformnogo otobrazheniya mnogosvyaznykh mnogougolnikov na kanonicheskie oblasti”, Tr. MI AN SSSR, 173, M., 1986, 55–68 | Zbl
[15] Volkov E. A., “Razvitie blochnogo metoda resheniya uravneniya Laplasa dlya konechnykh i beskonechnykh krugovykh mnogougolnikov”, Tr. MI AN SSSR, 187, M., 1989, 39–68
[16] Volkov E. A., “Bystryi blochnyi metod postroeniya funktsii Grina operatora Laplasa na mnogougolnikakh”, Differents. ur-niya, 28:7 (1992), 1189–1197 | MR | Zbl
[17] Volkov E. A., “O bystrom blochnom metode resheniya uravneniya Laplasa na mnogougolnikakh pri nelokalnykh granichnykh usloviyakh”, Dokl. RAN, 342:1 (1995), 11–14 | MR | Zbl