A priori estimates of the recognition accuracy for limited samplings
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 9, pp. 1432-1440 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_9_a14,
     author = {V. B. Berikov},
     title = {A priori estimates of the recognition accuracy for limited samplings},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1432--1440},
     year = {2003},
     volume = {43},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a14/}
}
TY  - JOUR
AU  - V. B. Berikov
TI  - A priori estimates of the recognition accuracy for limited samplings
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 1432
EP  - 1440
VL  - 43
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a14/
LA  - ru
ID  - ZVMMF_2003_43_9_a14
ER  - 
%0 Journal Article
%A V. B. Berikov
%T A priori estimates of the recognition accuracy for limited samplings
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 1432-1440
%V 43
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a14/
%G ru
%F ZVMMF_2003_43_9_a14
V. B. Berikov. A priori estimates of the recognition accuracy for limited samplings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 9, pp. 1432-1440. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a14/

[1] Huberty C., Applied discriminant analysis, Wiley, New York, 1994 | Zbl

[2] Linhart G., “Techniques of discriminant analysis with discrete variables”, Metrica, 2 (116) (1959), 138–140 | DOI | MR

[3] Borovkov A. A., “O zadache raspoznavaniya obrazov”, Teoriya veroyatnostei i ee primeneniya, 16:1 (1971), 132–136 | MR | Zbl

[4] Overall J., Woodward J. A., “Discriminant analysis with categorical data”, Appl. Psychological Measurement, 1 (1977), 371–384 | DOI

[5] Grishkyavichus D., Raudis Sh., “Ob ozhidaemoi oshibke klassifikatora dlya kachestvennykh priznakov”, Statistich. probl. upravleniya, 38 (1979), 95–111

[6] Blagoveschenskii Yu. N., Vapnik V. N., Meshalkin L. D., “Statisticheskie problemy upravleniya”, Tr. seminara, 14, In-t fiz. i matem. AN LitSSR, Vilnyus, 1976

[7] Jain A. K., Chandrasekaran B., “Dimensionality and sample size considerations in pattern recognition practice”, Classification, Pattern Recognition and Reduction of Dimensionality, Handb. Stat., 2, 1982, 835–855 | Zbl

[8] Donskoi V. I., “Algoritmy obucheniya, osnovannye na postroenii reshayuschikh derevev”, Zh. vychisl. matem. i matem. fiz., 22:4 (1982), 963–974 | MR

[9] Raudys S., Jain A., “Small sample size effects in statistical pattern recognition: recommendations for practitioners”, IEEE Trans. Pattern Analys. Mach. Intell., 13:3 (1991), 252–264 | DOI

[10] Raudys S., “On dimensionality, sample size, and classification error of nonparametric linear classification algorithms”, IEEE Trans. Pattern Analys. Mach. Intell., 19:6 (1997), 667–671 | DOI

[11] Jain A. K., Duin R. P. W., Mao J., “Statistical pattern recognition: A review”, IEEE Trans. Pattern Analys. Mach. Intell., 22:1 (2000), 4–37 | DOI

[12] Raudys S., Statistical and neural classifiers: An integrated approach to design, Springer, London, 2001

[13] Hughes G. F., “On the mean accuracy of statistical pattern recognizers”, IEEE Trans. Inform. Theory IT, 14:1 (1968), 55–63 | DOI

[14] Chandrasekaran B., “Independence of measurements and the mean recognition accuracy”, IEEE Trans. Inform. Theory, 17 (1971), 452–456 | DOI | MR

[15] Duin R., “The mean recognition performance for independent distributions”, IEEE Trans. Inform. Theory IT, 24 (1978), 394–395 | DOI | MR | Zbl

[16] Raudys S., Duin R., “Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix”, Pattern Recognition Letts., 19:5–6 (1998), 385–392 | DOI | Zbl

[17] Vapnik V. N., Chervonenkis A. Ya., Teoriya raspoznavaniya obrazov, Nauka, M., 1974 | MR | Zbl

[18] Lbov G. S., Startseva N. G., Logicheskie reshayuschie funktsii i voprosy statisticheskoi ustoichivosti reshenii, In-t matem. SO RAN, Novosibirsk, 1999 | MR

[19] Berikov V. B., “Ob ustoichivosti algoritmov raspoznavaniya v diskretnoi postanovke”, Iskusstvennyi intellekt, 2 (2000), 5–8

[20] Glazko G. V., Milanesi L., Rogozin I. B., “The subclass approach for mutational spectrum analysis: Application of the SEM algorithm”, J. Theor. Biol., 192 (1998), 475–487 | DOI

[21] Berikov V. B., Rogozin I. B., “Regression trees for analysis of mutational spectra in nucleotide sequences”, Bioinformatics, 15 (1999), 553–562 | DOI

[22] Gould H. W., Combinatorial identities, a standardized set of tables listing 500 binomial coefficient summations, West Wirg. Univ., Morgantown, 1972 | MR