@article{ZVMMF_2003_43_9_a11,
author = {V. K. Bulgakov and I. I. Potapov},
title = {High order upwind finite element schemes for the heat transfer},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1409--1413},
year = {2003},
volume = {43},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a11/}
}
TY - JOUR AU - V. K. Bulgakov AU - I. I. Potapov TI - High order upwind finite element schemes for the heat transfer JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 1409 EP - 1413 VL - 43 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a11/ LA - ru ID - ZVMMF_2003_43_9_a11 ER -
V. K. Bulgakov; I. I. Potapov. High order upwind finite element schemes for the heat transfer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 9, pp. 1409-1413. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_9_a11/
[1] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988
[2] Fletcher K., Vychislitelnye metody v dinamike zhidkostei, v. 1, Mir, M., 1991
[3] Rouch P. D., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl
[4] Patankar S., Chislennye metody resheniya zadach teplomassoobmena i dinamiki zhidkosti, Mir, M., 1984
[5] Barrett J. W., Morton K. W., “Optimal finite element approximation for diffusion-convection problems”, Conf. Math. Finite Elements Trends and Appl. (Brunei Univ., May, 1981)
[6] Bulgakov V. K., Chekhonin K. A.,Potapov I. I., “Optimal coordination coefficients selection in upwind finite-element schemes”, Fourth Internat. Symp. Advances Sci. and Technol. (Far East., February 10–15), Harbin, China, 1995
[7] Griffiths D. F., Mitchell A. R., “Finite elements for convection dominated flows”, AMD, 34, ed. T. J. Hughes, New York, 1979, 91–104 | MR | Zbl
[8] Zeinkiewicz O. C., The finite element method, 2nd ed., McGraw-Hill, London, 1977
[9] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidrodinamika i teploobmen, v. 2, Mir, M., 1990 | Zbl
[10] Baiocchi C., Brezzi F., Franca L. P., “Virtual bublees and Galerkin-least-squares method”, Comput. Meth. Appl. Mech. Engng., 105 (1993), 125–141 | DOI | MR | Zbl
[11] Hughes T. J. R., Franca L. P., Hulbert G. M., “A new finite element formulation for computational fluid dynamics. VIII: The Galerkin-least-squares method for advective-diffusive equations”, Comput. Meth. Appl. Mech. Engng., 73 (1989), 173–189 | DOI | MR | Zbl
[12] Brezzi F., Bristeau M. O., Franca L. P. et al., “A relationship between stabilized finite element methods and the Galerkin method with bubble functions”, Comput. Meth. Appl. Mech. Engng., 96 (1992), 117–129 | DOI | MR | Zbl
[13] Brezzi F., Franca L. P., Hughes T. J. R., Russo A., “$b=\int\! g$”, Comput. Meth. Appl. Mech. Engng., 145 (1997), 329–339 | DOI | MR | Zbl
[14] Brezzi F., Marini D., Russo A., “Application of the pseudo-free bubbles to the stabilization of convection-diffusion problems”, Comput. Meth. Appl. Mech. Engng., 166 (1998), 51–64 | DOI | MR
[15] Brooks A. N., Hughes T. J. R., “Streamline upwind Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stockes equations”, Comput. Meth. Appl. Mech. Engng., 32 (1982), 199–259 | DOI | MR | Zbl
[16] Franca L. P., Frey S. L., Hughes T. J. R., “Stabilized finite element methods. I: Application to the advective-diffusive model”, Comput. Meth. Appl. Mech. Engng., 95 (1992), 253–276 | DOI | MR | Zbl
[17] Sakharov A. S., Altenbakh I. (red.), Metod konechnykh elementov v mekhanike tverdykh tel, Kiev, 1982
[18] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[19] Franca L. P., Michel L., Charbel F., “Unusual stabilized finite element methods for second order linear differential equations”, Proc. IXth Internat. Conf. on Finite Elements in Fluids — New Trends and Applic. (Venezia, Italy, 15–21 October, 1995)
[20] Bulgakov B. K., Potapov I. I., Metod konechnykh elementov v zadachakh gidrodinamiki, Izd-vo KhGTU, Khabarovsk, 1999