@article{ZVMMF_2003_43_8_a2,
author = {V. K. Gorbunov and V. V. Petrishchev},
title = {Improvement of the normal spline collocation method for linear differential equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1150--1159},
year = {2003},
volume = {43},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_8_a2/}
}
TY - JOUR AU - V. K. Gorbunov AU - V. V. Petrishchev TI - Improvement of the normal spline collocation method for linear differential equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 1150 EP - 1159 VL - 43 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_8_a2/ LA - ru ID - ZVMMF_2003_43_8_a2 ER -
%0 Journal Article %A V. K. Gorbunov %A V. V. Petrishchev %T Improvement of the normal spline collocation method for linear differential equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2003 %P 1150-1159 %V 43 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_8_a2/ %G ru %F ZVMMF_2003_43_8_a2
V. K. Gorbunov; V. V. Petrishchev. Improvement of the normal spline collocation method for linear differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 8, pp. 1150-1159. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_8_a2/
[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1988 | MR
[2] Chistyakov V. F., “K metodam resheniya singulyarnykh lineinykh sistem obyknovennykh differentsialnykh uravnenii”, Vyrozhdennye sistemy obyknovennykh differents. ur-nii, Nauka, Novosibirsk, 1982
[3] Boyarintsev Yu. E., Danilov V. A., Loginov A. A., Chistyakov V. F., Chislennye metody resheniya singulyarnykh sistem, Nauka, Novosibirsk, 1989 | Zbl
[4] Bulatov M. V., Chistyakov V. F., “Ob odnom chislennom metode resheniya differentsialno-algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 459–470 | MR | Zbl
[5] Bulatov M. V., Metody resheniya differentsialno-algebraicheskikh i vyrozhdennykh integralnykh sistem, Avtoref. dis. ...dokt. fiz.-matem. nauk, Irkutsk, 2002
[6] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR
[7] Balakina E. A., Kuznetsov E. B., “Reshenie sistem differentsialno-algebraicheskikh uravnenii vysokikh indeksov”, Zh. vychisl. matem. i matem. fiz., 40:2 (2000), 199–206 | MR | Zbl
[8] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR
[9] März R., “On correctness and numerical treatment of boundary value problems in differential-algebraic equations”, Zh. vychisl. matem. i matem. fiz., 26:1 (1986), 50–64 | MR
[10] Gorbunov V. K., “Regularizatiori of degenerate equations and inequalities under explicit data parameterization”, J. Inverse and Ill-Posed Problems, 9:6 (2001), 575–594 | MR | Zbl
[11] Gorbunov V. K., Metody reduktsii neustoichivykh vychislitelnykh zadach, Ilim, Frunze, 1984 | MR
[12] Gorbunov V. K., “Reduktsiya lineinykh integralnykh uravnenii s ravnomernoi pogreshnostyu v pravoi chasti”, Zh. vychisl. matem. i matem. fiz., 25:2 (1985), 210–223 | MR | Zbl
[13] Gorbunov V. K., “Metod normalnoi splain-kollokatsii”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 212–224 | MR
[14] Gorbunov V. K., Ekstremalnye zadachi obrabotki rezultatov izmerenii, Ilim, Frunze, 1990
[15] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1973
[16] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975
[17] Morozov V. A., “Teoriya splainov i zadacha ustoichivogo vychisleniya neogranichennykh operatorov”, Zh. vychisl. matem. i matem. fiz., 11:3 (1971), 545–556
[18] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1983 | MR
[19] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[20] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[21] Gorbunov V. K., Petrischev V. V., “Metod normalnykh splainov v vyrozhdennykh sistemakh differentsialnykh uravnenii”, Fundamentalnye probl. matem. i mekhan., Uch. zap. UlGU, 3, Ulyanovsk, 1997, 125–132
[22] Gorbunov V. K., Petrischev V. V., “Metod normalnykh splainov v vyrozhdennykh zadachakh differentsialnykh uravnenii”, Tr. XII Baikalskoi mezhdunar. konf., v. 4, 2001, 99–102
[23] Kokhanovskii I. I., “Normalnye splainy v vychislitelnoi tomografii”, Avtometriya, 1995, no. 2, 84–89
[24] Gorbunov V. K., Matematicheskaya model potrebitelskogo sprosa, Uch. posobie, Izd-vo UlGU, Ulyanovsk, 2001
[25] Melnikov Yu. A., Influence functions and matrices, Marcel Dekker, Inc., New York, 1999 | MR
[26] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[27] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[28] Khimmelblau D., Prikladnoe nelineinoe programmirovanie, Mir, M., 1975
[29] Aronshain N., “Teoriya vosproizvodyaschikh yader”, Matematika, 7:2 (1963), 67–130
[30] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[31] Gorbunov V. K., Kokhanovskii I. I., “Iterativnaya regulyarizatsiya na osnove singulyarnogo analiza”, Vestn. MGU. Ser. 15. (VMK), 1995, no. 1, 17–20 | MR | Zbl