@article{ZVMMF_2003_43_8_a1,
author = {A. E. El'bert},
title = {On solutions of the perturbed {Hirota} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1138--1149},
year = {2003},
volume = {43},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_8_a1/}
}
A. E. El'bert. On solutions of the perturbed Hirota equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 8, pp. 1138-1149. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_8_a1/
[1] Agrawal G. P., Nonlinear fiber optics, Acad. Press, New York, 1995
[2] Zaspel C. E., Mantha J. H., Rapoport Yu. G., Grimansky V. V., “Evolution of solitons in magnetic thin films”, Phys. Rev. B, 64 (2001), 064416 | DOI
[3] Hirota R., “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14 (1973), 805–809 | DOI | MR | Zbl
[4] Sasa N., Satsuma J., “New-type of soliton solutions for a higher-order nonlinear Schrödinger equation”, J. Phys. Soc. Japan, 60:2 (1991), 409–417 | DOI | MR | Zbl
[5] Mihalache D., Truta N., Crasovan L.-C., “Painlevé analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term”, Phys. Rev. E, 56:1 (1997), 1064–1070 | DOI | MR
[6] Potasek M. J., Tabor M., “Exact solutions for an extended nonlinear Schrödinger equation”, Phys. Letts. A, 154:9 (1991), 449–452 | DOI | MR
[7] Gromov E. M., Talanov V. I., “Nelineinaya dinamika korotkikh tsugov voln v dispergiruyuschikh sredakh”, Zh. eksperim. i teor. fiz., 110:1(7) (1996), 137–149
[8] Karpman V. I., Rasmussen J. J., Shagalov A. G., “Dynamics of solitons and quasisolitons of cubic third-order nonlinear Schrödinger equation”, Phys. Rev. E, 64 (2001), 026614 | DOI
[9] Naife A. Kh., Metody vozmuschenii, Mir, M., 1976 | MR