Search of the global minimum for the nonlinear least square problem of ambiguous measurements data processing
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 7, pp. 931-938 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_7_a0,
     author = {E. A. Povalyaev},
     title = {Search of the global minimum for the nonlinear least square problem of ambiguous measurements data processing},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {931--938},
     year = {2003},
     volume = {43},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_7_a0/}
}
TY  - JOUR
AU  - E. A. Povalyaev
TI  - Search of the global minimum for the nonlinear least square problem of ambiguous measurements data processing
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 931
EP  - 938
VL  - 43
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_7_a0/
LA  - ru
ID  - ZVMMF_2003_43_7_a0
ER  - 
%0 Journal Article
%A E. A. Povalyaev
%T Search of the global minimum for the nonlinear least square problem of ambiguous measurements data processing
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 931-938
%V 43
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_7_a0/
%G ru
%F ZVMMF_2003_43_7_a0
E. A. Povalyaev. Search of the global minimum for the nonlinear least square problem of ambiguous measurements data processing. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 7, pp. 931-938. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_7_a0/

[1] Povalyaev A. A., “Ob otsenke maksimalnogo pravdopodobiya v mnogoshkalnom izmeritelnom ustroistve”, Radiotekhn. i elektronika, 21:5 (1976), 1042–1049

[2] Sobtsov N. V., “K zadache regressii pri neodnoznachnykh izmereniyakh”, Radiotekhn. i elektronika, 23:6 (1978), 1303–1305

[3] Penzin K. V., “Algoritmy operativnoi obrabotki mnogoshkalnykh izmerenii po kriteriyu maksimalnogo pravdopodobiya”, Radiotekhnika i elektronika, 35:1 (1990), 97–106

[4] Teunissen P. J. G., De Jonge P. J., Tiberius C. C., “Performance of the LAMBDA method for fast GPS ambiguity resolution”, J. Inst. Navigation, 44:3 (1997), 373–383

[5] Dennis Dzh., Shnabel R., Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | MR | Zbl

[6] Penzin K. V., “Variant algoritma Levenberga–Markvardta resheniya nelineinoi zadachi naimenshikh kvadratov”, Zh. vychisl. matem. i matem. fiz., 31:10 (1991), 1444–1451 | MR

[7] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966 | MR

[8] Streng G., Lineinaya algebra i ee primeneniya, Mir, M., 1980 | MR

[9] Strang G., Borre K., Linear algebra, geodesy, and GPS, Wellesley Cambridge Press, Cambridge, 1997 | Zbl

[10] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical recipes in C. The art scientific computing, 2nd ed., Cambridge Univ. Press, Cambridge, 1992 | MR