Optimal triangulations: existence, approximations, and double differentiation of $P_1$ finite element functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 866-874 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_6_a8,
     author = {Yu. V. Vassilevski and K. N. Lipnikov},
     title = {Optimal triangulations: existence, approximations, and double differentiation of $P_1$ finite element functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {866--874},
     year = {2003},
     volume = {43},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a8/}
}
TY  - JOUR
AU  - Yu. V. Vassilevski
AU  - K. N. Lipnikov
TI  - Optimal triangulations: existence, approximations, and double differentiation of $P_1$ finite element functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 866
EP  - 874
VL  - 43
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a8/
LA  - ru
ID  - ZVMMF_2003_43_6_a8
ER  - 
%0 Journal Article
%A Yu. V. Vassilevski
%A K. N. Lipnikov
%T Optimal triangulations: existence, approximations, and double differentiation of $P_1$ finite element functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 866-874
%V 43
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a8/
%G ru
%F ZVMMF_2003_43_6_a8
Yu. V. Vassilevski; K. N. Lipnikov. Optimal triangulations: existence, approximations, and double differentiation of $P_1$ finite element functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 866-874. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a8/

[1] D'Azevedo E., “Optimal triangular mesh generation by coordinate transformation”, SIAM J. Sci. Statist. Comput., 12 (1991), 755–786 | DOI | MR

[2] Rippa S., “Long and thin triangles can be good for linear interpolation”, SIAM J. Numer. Analys., 29 (1992), 257–270 | DOI | MR | Zbl

[3] Agouzal A., Lipnikov K., Vassilevski Y., “Adaptive generation of quasi-optimal tetrahedral meshes”, East-West J. Numer. Math., 7 (1999), 223–244 | MR | Zbl

[4] Agouzal A., Vassilevski Y., “On a discrete Hessian recovery for $P_1$ finite elements”, J. Numer. Math., 10 (2002), 1–12 | DOI | MR | Zbl

[5] Vassilevski Y., Lipnikov K., “Adaptive algorithm for generation of quasi-optimal meshes”, Comput. Math. Math. Phys., 39:9 (1999), 1532–1551 | MR

[6] D'Azevedo E., Simpson R., “On optimal triangular meshes for minimizing the gradient error”, Numer. Math., 59 (1991), 321–348 | DOI | MR

[7] Tikhomirov V., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, Uspekhi matem. nauk, 15 (1960), 81–120 | Zbl

[8] Buscaglia G., Dari E., “Anisotropic mesh optimization and its application in adaptivity”, Inter. J. Numer. Meth. Engng., 40 (1997), 4119–4136 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[9] Dompierre J., Vallet M.-G., Fortin M. et. al., Edge-based mesh adaptation for CFD, Techn. Rep. R95-73, CERCA, 1995

[10] Buscaglia G., Agouzal A., Ramirez P., Dari E., “On Hessian recovery and anisotropic adaptivity”, Proc. ECCOMAS 98 the 4th European CFD Conf. (Athens, Greece, 1998), 403–407