Three-dimensional quasi-isometric mappings as minimizers of polyconvex functional
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 854-865 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_6_a7,
     author = {V. A. Garanzha and N. L. Zamarashkin},
     title = {Three-dimensional quasi-isometric mappings as minimizers of polyconvex functional},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {854--865},
     year = {2003},
     volume = {43},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a7/}
}
TY  - JOUR
AU  - V. A. Garanzha
AU  - N. L. Zamarashkin
TI  - Three-dimensional quasi-isometric mappings as minimizers of polyconvex functional
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 854
EP  - 865
VL  - 43
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a7/
LA  - ru
ID  - ZVMMF_2003_43_6_a7
ER  - 
%0 Journal Article
%A V. A. Garanzha
%A N. L. Zamarashkin
%T Three-dimensional quasi-isometric mappings as minimizers of polyconvex functional
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 854-865
%V 43
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a7/
%G ru
%F ZVMMF_2003_43_6_a7
V. A. Garanzha; N. L. Zamarashkin. Three-dimensional quasi-isometric mappings as minimizers of polyconvex functional. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 854-865. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a7/

[1] Ciarlet P. G., Mathematical elasticity, v. 1, Studies in Math. Applic., 20, Three dimensional elasticity, Elsevier, New York, 1998

[2] Codunov S. K., Gordienko V. M., Chumakov G. A., “Quasi-isometric parametrization of a curvilinear quadrangle and a metric of constant curvature”, Siberian Advances Math., 5:2 (1995), 1–20

[3] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Analys., 63 (1977), 337–403 | DOI | MR | Zbl

[4] Ball J. M., Singularities and computation of minimizers for variational problems, Preprint Math. Inst. Univ. of Oxford, 1999 | MR

[5] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl

[6] Reshetnyak Y. G., “Mappings with bounded deformation as extremals of Dirichlet type integrals”, Siberian Math. J., 9 (1968), 487–498 | DOI | Zbl

[7] Yosida K., Functional analysis, Springer, Berlin, 1966

[8] Dacorogna B., Direct methods in the calculus of variations, Springer, New Jork, 1989 | MR

[9] Dakoronya B., “Slabaya nepreryvnost i slabaya polunepreryvnost snizu nelineinykh funktsionalov”, Uspekhi matem. nauk, 44:4 (1989), 34–97 | MR

[10] Konovalov V. N., “Kriterii prodolzheniya prostranstv Soboleva $w_\infty^r$ iz ogranichennykh ploskikh oblastei”, Dokl. AN SSSR, 141:2 (1961), 308–311

[11] Rockafellar R. T., Convex analysis, Princeton Univ. Press, Princeton, New Jersey, 1970 | MR

[12] Acerbi E., Fusco N., “Semicontinuity problems in the calculus of variations”, Arch. Ration. Mech. Analys., 86 (1984), 125–145 | DOI | MR | Zbl

[13] Ball J. M., “Global invertibility of Sobolev functions and the interpenetration of matter”, Proc. Roy. Soc. Edinburgh A, 88 (1981), 315–328 | MR | Zbl