@article{ZVMMF_2003_43_6_a5,
author = {S. A. Ivanenko},
title = {Variational methods of adaptive grids generation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {830--844},
year = {2003},
volume = {43},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a5/}
}
S. A. Ivanenko. Variational methods of adaptive grids generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 830-844. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a5/
[1] Sidorov A. F., “Ob odnom algoritme rascheta optimalnykh raznostnykh setok”, Tr. Matem. in-ta AN SSSR, 74, M., 1966, 147–151 | MR | Zbl
[2] Godunov S. L., Prokopov G. P., “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1031–1059 | MR | Zbl
[3] Ivanenko S. A., Prokopov G. P., “Metody postroeniya adaptivno-garmonicheskikh setok”, Zh. vychisl. matem. i matem. fiz., 37:6 (1997), 643–662 | MR | Zbl
[4] Liseikin V. D., “O konstruirovanii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR
[5] Jaquotte O.-P., “A mechanical model for a new grid generation method in computational fluid dynamics”, Comput. Meth. Appl. Mech. and Engng., 66 (1988), 323–338 | DOI | MR
[6] Codunov S. K., Zhukov V. T., Feodoritova O. V., “An algorithm for construction of quasiisometric grids in curvilinear quadrangular regions”, Proc. 16th Internat. Conf. Numer. Meth. in Fluid Dynamics (Arcachon, France, July 6–10, 1998), 49–54
[7] Tinoko-Ruiz J. G., Barrera-Sanchez P., “Area functionals in plane grid generation”, Proc. 6th Internat. Conf. Numer. Grid Generation in Comput. Field Simulation (Univ. Greenwich, July 6–9, 1998), 293–302
[8] Prokopov G. P., “Metodologiya variatsionnogo podkhoda k postroeniyu kvaziortogonalnykh setok”, Vopr. atomnoi nauki i tekhn. Ser. Matem. modelirovanie fiz. protsessov, 1998, no. 1, 31–46
[9] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl
[10] Liu A., Joe B., “Relationship between tetrahedron shape measures”, BIT, 34 (1994), 268–287 | DOI | MR | Zbl
[11] Dompierre J., Labbe P., Guibault F., Camarero R., “Proposals of banchmarks for 3D unstructured tetrahedral mesh optimization”, Proc. 7th Internat. Mesh. Roundtable, 1998, 459–478
[12] Knupp P. M., “Matrix norms and the condition number. A general framework to improve mesh quality via nodemovement”, Proc. 8th Internat. Mesh. Roundtable (South Lake Tahoe, CA, USA, 1999), 13–22
[13] Knupp P. M., “Algebraic mesh quality metrics”, SIAM J. Sci. Comput., 23:1 (2001), 193–218 | DOI | MR | Zbl
[14] George P. L., Borouchaki H., Delaunay triangulation and meshing. Application to finite elements, Hermes, Paris, 1998 | MR
[15] Knupp P., Steinberg S., Fundamentals of grid generation, CRC Press, Boca Raton, 1993 | MR
[16] Carey G. F., Computational grids: generation, adaptation, and solution strategies, Taylor Francis, 1997 | MR | Zbl
[17] Ivanenko S. A., Adaptivno-garmonicheskie setki, VTs RAN, M., 1997 | MR
[18] Liseikin V. D., Grid generation methods, Springer, New York, 1999 | MR | Zbl
[19] J. F. Thompson, B. K. Soni, N. P. Weatherhill (eds.), Handbook of grid generation, CRC Press, Boca Raton, Fl., 1999 | MR | Zbl
[20] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1986 | MR
[21] Eells J. E., Lemair L., “Another report on harmonic maps”, Bull. London Math. Soc., 20:86 (1988), 387–524 | MR
[22] Fuller F. B., “Harmonic mappings”, Proc. Nat. Acad. Sci., USA, 40 (1954), 987–991 | DOI | MR | Zbl
[23] Eells J. E., Sampson J. H., “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86:1 (1964), 109–160 | DOI | MR | Zbl
[24] Hamilton R., Harmonic maps of manifolds with boundary, Lect. Notes in Math., 471, 1975 | MR | Zbl
[25] Hartman P., “On homotopic harmonic maps”, Canad. J. Math., 19 (1967), 673–687 | DOI | MR | Zbl
[26] Sampson J. T., “Some properties and applications of harmonic mappings”, Ann. Ecole Norm. Sup., 11 (1978), 211–228 | MR | Zbl
[27] Shoen R., Yau S. T., “On univalent harmonic maps between surfaces”, Invent. Math., 44:3 (1978), 265–278 | DOI | MR
[28] Levi H., “On the non-vanishing of the Jacobian in cirtain one-to-one mappings”, Bull. Amer. Math. Soc., 42 (1936), 689–692 | DOI | MR
[29] Joest J., Shoen R., “On the existence of harmonic diffeomorphisms between surfaces”, Invent. Math., 66 (1982), 353–359 | DOI | MR
[30] Farrell F. T., Jones L. E., “Some non-homeomorphic harmonic homotopy equivalences”, Bull. London Math. Soc., 28 (1996), 177–182 | DOI | MR | Zbl
[31] Bobylev N. A., Ivanenko S. A., Kazunin A. V., “O kusochno-gladkikh gomeomorfnykh otobrazheniyakh ogranichennykh oblastei i ikh prilozheniyakh k teorii setok”, Postroenie raschetnykh setok: teoriya i prilozheniya, Tr. seminara, VTs RAN, M., 2002, 26–41
[32] Ivanenko S. A., “O suschestvovanii uravnenii dlya opisaniya klassov nevyrozhdennykh krivolineinykh koordinat v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 47–52 | MR | Zbl
[33] Ivanenko S. A., “Upravlenie formoi yacheek v protsesse postroeniya setki”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1662–1684 | MR | Zbl
[34] Edelshtein K. K., Ivanenko S. A., Patrik P. A., “Prostranstvennaya struktura vetrovykh techenii v dolinnom vodokhranilische”, Meteorologiya i gidrologiya, 2001, no. 7, 89–100