Control of the metric properties of three-dimensional mappings
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 818-829 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_6_a4,
     author = {V. A. Garanzha},
     title = {Control of the metric properties of three-dimensional mappings},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {818--829},
     year = {2003},
     volume = {43},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a4/}
}
TY  - JOUR
AU  - V. A. Garanzha
TI  - Control of the metric properties of three-dimensional mappings
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 818
EP  - 829
VL  - 43
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a4/
LA  - ru
ID  - ZVMMF_2003_43_6_a4
ER  - 
%0 Journal Article
%A V. A. Garanzha
%T Control of the metric properties of three-dimensional mappings
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 818-829
%V 43
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a4/
%G ru
%F ZVMMF_2003_43_6_a4
V. A. Garanzha. Control of the metric properties of three-dimensional mappings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 818-829. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a4/

[1] Godunov S. K., Prokopov G. P., “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1031–1059 | MR | Zbl

[2] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl

[3] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl

[4] Jacquotte O. P., “A mechanical model for a new grid generation method in computational fluid dynamics”, Comput. Meth. Appl. Mech. and Engng., 66 (1988), 323–338 | DOI | MR | Zbl

[5] Liseikin V. D., “O konstruirovanii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR

[6] Ivanenko S. A., Adaptivno-garmonicheskie setki, VTs RAN, M., 1997 | MR

[7] Hormann K., Greiner G., “MIPS: an efficient global parametrization method”, Curve and Surface Design, Vanderbilt Univ. Press, Nashville, 2000, 163–172 | MR

[8] Ciarlet P. G., Mathematical elasticity, v. 1, Stud. Math. Appl., 20, Three dimensional elasticity, 1988 | MR

[9] Godunov S. K., Gordienko V. M., Chumakov G. A., “Quasi-isometric parametrization of a curvilinear quadrangle and a metric of constant curvature”, Siberian Advances in Math., 5:2 (1995), 1–20 | MR

[10] Reshetnyak Y. G., “Mappings with bounded deformation as extremals of Dirichlet type integrals”, Siberian Math. J., 9 (1968), 487–498 | DOI | Zbl

[11] Ball J. M., “Global invertibility of Sobolev functions and the interpenetration of matter”, Proc. Roy. Soc. Edinburgh A, 88 (1981), 315–328 | MR | Zbl

[12] Eells J. E., Lemair L., “Another report on harmonic maps”, Bull. London Math. Soc., 20:86 (1988), 387–524 | MR

[13] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Analys., 63 (1977), 337–403 | DOI | MR | Zbl

[14] Garanzha V. A., “Barernyi metod postroeniya kvaziizometricheskikh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl

[15] Garanzha V. A., Zamarashkin N. L., “Prostranstvennye kvaziizometrichnye otobrazheniya kak resheniya zadachi minimizatsii polivypuklogo funktsionala”, Postroenie raschetnykh setok: teoriya i prilozhenie, VTs RAN, M., 2002, 150–168

[16] Ball J. M., Singularities and computation of minimizers for variational problems, Preprint Math. Inst. Univ. Oxford, 1999 | MR

[17] Garanzha V. A., “Maximum norm optimization of quasi-isometric mappings”, Numer. Linear Algebra with Applic., 9:6–7 (2002), 493–510 | DOI | MR | Zbl

[18] Strang G., Fix J., Analysis of finite element method, Prentice-Hall, Englewood Cliffs, 1973 | MR | Zbl

[19] Reshetnyak Yu., “Two-dimensional manifolds of bounded curvature”, Geometry, v. IV, Non-Regular Riemannian Geometry, Springer-Verlag, Berlin, 1991, 3–165 | MR

[20] Floater M. S., “Parametrization and smooth approximation of surface triangulations”, Comput. Aided Geom. Design, 14 (1997), 231–250 | DOI | MR | Zbl

[21] George P. L., Borouchaki H., Delaunay triangulation and meshing. Application to finite elements, Hermes, Paris, 1998 | MR