Applications of the internal iterations of the conjugate gradients method to solution large scale sparse non-linear optimization problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 802-807 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_6_a2,
     author = {I. E. Kaporin},
     title = {Applications of the internal iterations of the conjugate gradients method to solution large scale sparse non-linear optimization problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {802--807},
     year = {2003},
     volume = {43},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a2/}
}
TY  - JOUR
AU  - I. E. Kaporin
TI  - Applications of the internal iterations of the conjugate gradients method to solution large scale sparse non-linear optimization problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 802
EP  - 807
VL  - 43
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a2/
LA  - ru
ID  - ZVMMF_2003_43_6_a2
ER  - 
%0 Journal Article
%A I. E. Kaporin
%T Applications of the internal iterations of the conjugate gradients method to solution large scale sparse non-linear optimization problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 802-807
%V 43
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a2/
%G ru
%F ZVMMF_2003_43_6_a2
I. E. Kaporin. Applications of the internal iterations of the conjugate gradients method to solution large scale sparse non-linear optimization problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 802-807. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a2/

[1] Dembo R., Steihaug T., “Truncated Newton algorithms for large-scale unconstrained optimization”, Math. Program., 26 (1983), 190–212 | DOI | MR | Zbl

[2] Kaporin I., Axelsson O., “On a class of nonlinear equation solvers based on the residual norm reduction over a sequence of affine subspaces”, SIAM J. Sci. Comput., 16:1 (1994), 228–249 | DOI | MR

[3] Kaporin I. E., “Ispolzovanie predobuslovlennykh podprostranstv Krylova v metodakh tipa sopryazhennykh gradientov dlya resheniya nelineinoi zadachi naimenshikh kvadratov”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1995, no. 3, 26–31 | MR | Zbl

[4] Axelsson O., Kaporin I., “Error norm estimation and stopping criteria in preconditioned conjugate gradient iterations”, Numer. Linear Algebra with Appls., 8 (2001), 265–286 | DOI | MR | Zbl

[5] Freitag L., Knupp P., Munson T., Shontz S., “A comparison of optimization software for mesh shape-quality improvement problems”, Proc. XI Internat. Mesh. Roundtable on Mesh Quality/Smoothing/Optimization, Sandia Nat. Labs., 2002, 29–40

[6] Garanzha V. A., Kaporin I. E., “Regulyarizatsiya variatsionnogo metoda postroeniya raschetnykh setok”, Zh. vychisl. matem. i matem. fiz., 39:9 (1999), 1489–1503 | MR | Zbl

[7] Axelsson O., Kaporin I., “Minimum residual adaptive multilevel procedure for the finite element solution of nonlinear stationary problems”, SIAM J. Numer. Analys., 35 (1998), 1213–1229 | DOI | MR | Zbl

[8] Kaporin I., “High quality preconditioning of a general symmetric positive definite matrix based on its $U^{\scriptscriptstyle\text{T}}U+U^{\scriptscriptstyle\text{T}}R+R^{\scriptscriptstyle\text{T}}U$-decomposition”, Numer. Linear Algebra with Appls., 5 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] Axelsson O., “A class of iterative methods for finite element equations”, Comput. Meth. Appl. Mech. Engng., 9 (1976), 123–137 | DOI | MR | Zbl