@article{ZVMMF_2003_43_6_a13,
author = {N. A. Vladimirova and A. M. Sorokin},
title = {Anisotropic adaptation of three-dimensional irregular grids to the problems of gasdynamic computations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {909--919},
year = {2003},
volume = {43},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a13/}
}
TY - JOUR AU - N. A. Vladimirova AU - A. M. Sorokin TI - Anisotropic adaptation of three-dimensional irregular grids to the problems of gasdynamic computations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 909 EP - 919 VL - 43 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a13/ LA - ru ID - ZVMMF_2003_43_6_a13 ER -
%0 Journal Article %A N. A. Vladimirova %A A. M. Sorokin %T Anisotropic adaptation of three-dimensional irregular grids to the problems of gasdynamic computations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2003 %P 909-919 %V 43 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a13/ %G ru %F ZVMMF_2003_43_6_a13
N. A. Vladimirova; A. M. Sorokin. Anisotropic adaptation of three-dimensional irregular grids to the problems of gasdynamic computations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 6, pp. 909-919. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_6_a13/
[1] Habashi W. G., Fortin M., Dompierre J. et al., Anisotropic mesh optimization for structured and unstructured meshes, VKI Lect. Ser. 1997-02, 1997
[2] Peraire J., Vahdati M., Morgan K., Zienkeiwicz O. C., “Adaptive remeshing for compressible flow computations”, J. Comput. Phys., 72 (1987), 449–466 | DOI | Zbl
[3] George P. L., Hecht F., “Nonisotropic grids”, Handbook Grid Generation, CRC Press, 1999, 20-1–20-30
[4] Dompierre J., Labbe P., Garon A., Camarero R., Unstructured tetrahedral mesh adaptation for two-dimensional space-time finite elements, AIAA Paper 2000-0810, 2000 | Zbl
[5] Babushka I., Aziz A., “On the angle condition in the finite element method”, SIAM J. Numer. Analys., 13 (1976), 214–226 | DOI | MR
[6] Vasilevskii Yu. V., Lipnikov K. N., “An adaptive algorithm for quasioptimal mesh generation”, Comput. Math. and Math. Phys., 39:9 (1999), 1468–1486 | MR | Zbl
[7] Barth T., Aspects of unstructured grids and finite-volume solvers for the Euler and Navier–Stokes equations, AGARD Rept. 787, 1992
[8] Bey K., A Runge–Kutta discontinuous finite element method for high speed flows, Techn. Rept. 91-1575, AIAA, Honolulu, Hawaii, 1991
[9] Cockburn B., Lin S. Y., Shu C. W., “TVD Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III: One dimensional systems”, J. Comput. Phys., 84 (1989), 90–113 | DOI | MR | Zbl
[10] Cockburn B., Shu C. W., The Runge–Kutta discontinuous Galerkin method for conservation laws. V: Multidimensional systems, Techn. Rept. 201737, ICASE, NASA Langley R. C., 1997 | MR
[11] Galeev D. M., “Issledovanie svoistv skhemy dlya approksimatsii zakonov sokhraneniya s vysokim poryadkom tochnosti”, Aerodinamika letatelnykh apparatov, Materialy XIII Shkoly-seminara (28 fevralya-1 marta), TsAGI, M., 2002, 35–36
[12] Sakovich V. S., “Numerical solution of Euler and Navier–Stokes equations on unstructured grids”, Proc. 6th Internat. Conf. on Numer. Grid Generation in Comput. Field Simulations (July 6–9, Greenwich, UK), 1998, 931–941