On a generalization of Obreshkoff–Ehrlich method for simultaneous inclusion of only part of all multiple roots of algebraic polynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 4, pp. 506-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_4_a3,
     author = {A. I. Iliev and N. V. Kyurkchiev},
     title = {On a generalization of {Obreshkoff{\textendash}Ehrlich} method for simultaneous inclusion of only part of all multiple roots of algebraic polynomials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {506--512},
     year = {2003},
     volume = {43},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_4_a3/}
}
TY  - JOUR
AU  - A. I. Iliev
AU  - N. V. Kyurkchiev
TI  - On a generalization of Obreshkoff–Ehrlich method for simultaneous inclusion of only part of all multiple roots of algebraic polynomials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 506
EP  - 512
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_4_a3/
LA  - en
ID  - ZVMMF_2003_43_4_a3
ER  - 
%0 Journal Article
%A A. I. Iliev
%A N. V. Kyurkchiev
%T On a generalization of Obreshkoff–Ehrlich method for simultaneous inclusion of only part of all multiple roots of algebraic polynomials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 506-512
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_4_a3/
%G en
%F ZVMMF_2003_43_4_a3
A. I. Iliev; N. V. Kyurkchiev. On a generalization of Obreshkoff–Ehrlich method for simultaneous inclusion of only part of all multiple roots of algebraic polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 4, pp. 506-512. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_4_a3/

[1] Obreshkoff N., “On the numerical solving equations”, Ann. Sofia Univ., 56 (1963), 73–83

[2] Ehrlich L., “A modified newton's method for polynomials”, Communs. ACM, 10 (1967), 107–108 | DOI | Zbl

[3] Semerdzhiev Kh., “Iteration methods for simultaneous finding all roots of generalized polynomial equations”, Math. Balk. New Ser., 8 (1994), 311–335 | MR | Zbl

[4] Gargantini I., “Further applications of circular arithmetic: schroeder-like algorithms with error bounds for finding zeros of polynomials”, SIAM J. Numer. Anal., 15 (1978), 497–510 | DOI | MR | Zbl

[5] Sendov B., Andreev A., Kjurkchiev N., Numerical Solution of Polynomial Equations, A Handbook Numer. Analys., 3, Elsevier, Amsterdam, 1994 | MR

[6] Petkovic M., Iterative methods for simultaneous inclusion of polynomial zeros, Lect. Notes Math., 1387, Springer, Berlin, 1989 | MR | Zbl

[7] Kyurkchiev N., Initial approximations and root finding methods, Berlin GmbH Wiley-VCH, 104, Verlag, Berlin, 1998 | MR

[8] Iliev A., Kyurkchiev N., “On a generalization of Weierstrass–Dochev method for simultaneous extraction of only a part of all roots of algebraic polynomials, Part I”, C. R. Acad. Bulg. Sci., 55 (2002), 23–26 | MR | Zbl

[9] Kanno S., Kyurkchiev N., Yamamoto T., “On some methods for the simultaneous determination of polynomial zeros”, Japan J. Industr. and Appl. Math., 13 (1996), 267–288 | DOI | MR | Zbl