Approximate solution of the semi-coercive Signorini problem with inhomogeneous boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 3, pp. 388-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_3_a5,
     author = {A. Ya. Zolotukhin and R. V. Namm and A. V. Pachina},
     title = {Approximate solution of the semi-coercive {Signorini} problem with inhomogeneous boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {388--398},
     year = {2003},
     volume = {43},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a5/}
}
TY  - JOUR
AU  - A. Ya. Zolotukhin
AU  - R. V. Namm
AU  - A. V. Pachina
TI  - Approximate solution of the semi-coercive Signorini problem with inhomogeneous boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 388
EP  - 398
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a5/
LA  - ru
ID  - ZVMMF_2003_43_3_a5
ER  - 
%0 Journal Article
%A A. Ya. Zolotukhin
%A R. V. Namm
%A A. V. Pachina
%T Approximate solution of the semi-coercive Signorini problem with inhomogeneous boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 388-398
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a5/
%G ru
%F ZVMMF_2003_43_3_a5
A. Ya. Zolotukhin; R. V. Namm; A. V. Pachina. Approximate solution of the semi-coercive Signorini problem with inhomogeneous boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 3, pp. 388-398. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a5/

[1] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[2] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[3] Signorini A., “Sopra alcune questioni di elastostatics”, Atti Soc. Itl. per Progresso delle Scienze, 1933, 513–533

[4] Glavaček I., Haslinger J., Nečas I., Lovišek J., Numerical solution of variational inequalities, Springer, Berlin etc., 1988

[5] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | MR | Zbl

[6] Kaplan A. A., Namm P. V., “K kharakteristike minimiziruyuschikh posledovatelnostei dlya zadachi Sinorini”, Dokl. AN SSSR, 273:4 (1983), 797–800 | MR | Zbl

[7] Namm R. V., “O nekotorykh algoritmakh dlya resheniya zadachi Sinorini”, Optimizatsiya, 1983, no. 33 (50), 63–78 | MR

[8] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shkola, M., 1977 | MR

[9] Namm R. V., “Stable methods for ill-posed variational inequalities in mechanics”, Lect. Notes Economics and Math. Systems, 452, Springer, Berlin etc., 1997, 214–228 | MR | Zbl

[10] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1975 | MR

[11] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha, Preprint, VNII sistemnykh issledovanii, M., 1979, 74 pp.

[12] Antipin A. S., “O skhodimosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–706 | MR

[13] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii, Nauka, Novosibirsk, 1981 | Zbl

[14] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl

[15] Brezis H., “Problèmes unilatéraux”, J. Math. Pures et Appl., 51 (1972), 1–168 | MR | Zbl

[16] Kaplan A. A., Namm P. V., “Ob otsenke skorosti skhodimosti iteratsionnykh protsessov s prox-regulyarizatsiei”, Issl. po uslovnoi korrektnosti zadach matem. fiz., Novosibirsk, 1989, 60–77