Theorems on alternatives and their applications to numerical methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 3, pp. 354-375 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_3_a3,
     author = {A. I. Golikov and Yu. G. Evtushenko},
     title = {Theorems on alternatives and their applications to numerical methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {354--375},
     year = {2003},
     volume = {43},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a3/}
}
TY  - JOUR
AU  - A. I. Golikov
AU  - Yu. G. Evtushenko
TI  - Theorems on alternatives and their applications to numerical methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 354
EP  - 375
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a3/
LA  - ru
ID  - ZVMMF_2003_43_3_a3
ER  - 
%0 Journal Article
%A A. I. Golikov
%A Yu. G. Evtushenko
%T Theorems on alternatives and their applications to numerical methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 354-375
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a3/
%G ru
%F ZVMMF_2003_43_3_a3
A. I. Golikov; Yu. G. Evtushenko. Theorems on alternatives and their applications to numerical methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 3, pp. 354-375. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a3/

[1] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[2] Eremin I. I., Teoriya lineinoi optimizatsii, UrO RAN, Ekaterinburg, 1998

[3] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial, M., 1998 | MR

[4] Geil D., Teoriya lineinykh ekonomicheskikh modelei, Izd-vo inostr. lit., M., 1963

[5] Razumikhin B. S., Fizicheskie modeli i metody teorii ravnovesiya v programmirovanii i ekonomike, Nauka, M., 1975 | MR

[6] Mangasarian O. L., Nonlinear programming, SIAM, Philadelphia, 1994 | MR

[7] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, Mir, M., 1991

[8] Dax A., “The relationship between theorems of the alternative, least norm problems, steepest descent directions, and degeneracy: A review”, Ann. Operat. Res., 46:1 (1993), 11–60 | DOI | MR | Zbl

[9] Giannessi F., “Theorems of the alternative and optimization”, Encyclopedia of Optimization, v. 5, Kluwer Acad. Publs., Dordrecht etc., 2001, 437–444

[10] Broyden C. G., “On theorems of alternative”, Optimizat. Meth. and Software, 16:1–4 (2001), 101–111 | DOI | MR | Zbl

[11] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983 | MR

[12] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1983 | MR

[13] Eremin I. I., Dvoistvennost v lineinoi optimizatsii, UrO RAN, Ekaterinburg, 2001

[14] Eremin I. I., “O kvadratichnykh zadachakh i polnokvadratichnykh zadachakh vypuklogo programmirovaniya”, Izv. vuzov. Matem., 1998, no. 12, 22–28 | MR | Zbl

[15] Evtushenko Yu., “Computation of exact gradients in distributed dynamic systems”, Optimizat. Meth. and Software, 9:1–3 (1998), 45–75 | DOI | MR | Zbl

[16] Golikov A. I., Evtushenko Yu. G., “Dvoistvennyi podkhod k resheniyu sistem lineinykh ravenstv i neravenstv”, Metody optimizatsii i prilozh., Tr. XII Baikalskoi mezhdunar. konf., Plenarnye doklady, Irkutsk, 2001, 91–99

[17] Golikov A. I., Evtushenko Yu. G., “Novyi metod resheniya sistem lineinykh ravenstv i neravenstv”, Dokl. RAN, 381:4 (2001), 444–447 | MR | Zbl

[18] Golikov A. I., Evtushenko Yu. G., “Otyskanie normalnykh reshenii v zadachakh lineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1766–1786 | MR | Zbl

[19] Golikov A. I., Evtushenko Yu. G., “Primenenie teorem ob alternativakh k nakhozhdeniyu normalnykh reshenii lineinykh sistem”, Izv. vuzov. Matematika, 2001, no. 12 (475), 21–31 | MR | Zbl

[20] Voitov O. N., Zorkaltsev V. I., Filatov A. Yu., Issledovanie sistem neravenstv algoritmami vnutrennikh tochek na zadachakh poiska dopustimykh rezhimov elektroenergeticheskikh sistem, Preprint No 10, ISEM SO RAN, Irkutsk, 1997, 28 pp.

[21] Zorkaltsev V. I., Teorema Farkasha i teoriya dvoistvennosti v lineinoi optimizatsii, Preprint No 9, ISEM SO RAN, Irkutsk, 2001, 15 pp.