@article{ZVMMF_2003_43_3_a13,
author = {L. V. Borodachev and I. V. Mingal\"ev and O. V. Mingal\"ev},
title = {A drift algorithm for the motion of a particle in the {Darwin} model of a plasma},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {467--480},
year = {2003},
volume = {43},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a13/}
}
TY - JOUR AU - L. V. Borodachev AU - I. V. Mingalëv AU - O. V. Mingalëv TI - A drift algorithm for the motion of a particle in the Darwin model of a plasma JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2003 SP - 467 EP - 480 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a13/ LA - ru ID - ZVMMF_2003_43_3_a13 ER -
%0 Journal Article %A L. V. Borodachev %A I. V. Mingalëv %A O. V. Mingalëv %T A drift algorithm for the motion of a particle in the Darwin model of a plasma %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2003 %P 467-480 %V 43 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a13/ %G ru %F ZVMMF_2003_43_3_a13
L. V. Borodachev; I. V. Mingalëv; O. V. Mingalëv. A drift algorithm for the motion of a particle in the Darwin model of a plasma. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 3, pp. 467-480. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a13/
[1] Darwin C. C., “Dynamical motions of charged particles”, Philos. Mag., 39 (1920), 537–551
[2] Kaufman A. N., Rostler P. S., “The Darwin model as a tool for electromagnetic plasma simulation”, Phys. Fluids, 14:2 (1971), 446–448 | DOI
[3] Nilsen K., Lyuis G., “Modeli ukrupnennykh chastits v bezyzluchatelnom predele”, Vychisl. metody v fiz. Upravlyaemyi termoyadernyi sintez, Mir, M., 1980, 395–418
[4] Hewett D. W., “Elumination of electromagnetic radiation in plasma simulation: the Darwin or magnetoinductive approximation”, Space Sci. Rev., 42 (1985), 29–40 | DOI
[5] Hewett D. W., “Low-frequency electromagnetic (Darwin) applications in plasma simulation”, Comput. Phys. Communs., 84 (1994), 243–277 | DOI | Zbl
[6] Borodachev L. V., “K probleme matematicheskogo modelirovaniya bezyzluchatelnoi plazmy”, Vestn. MGU. Ser. 3, 34:3 (1993), 87
[7] Borodachev L. V., Darvinskoe opisanie samosoglasovannykh elektromagnitnykh polei plazmy i osobennosti ego diskretnoi interpretatsii, Preprint No 19/2000, MGU, M., 2000
[8] Marov M. Ya., Kolesnichenko A. V., Vvedenie v planetnuyu aeronomiyu, Nauka, M., 1987
[9] Maltsev Yu. P., Lektsii po magnitosferno-ionosfernoi fizike, KNTs RAN, Apatity, 1995
[10] Artsimovich L. A., Sagdeev R. Z., Fizika plazmy dlya fizikov, Atomizdat, M., 1979
[11] Khokni R., Istvud Dzh., Chislennoe modelirovanie metodom chastits, Mir, M., 1987
[12] Borodachev L. V., “Neyavnaya approksimatsiya uravnenii dvizheniya darvinskoi modeli plazmy”, Zh. vychisl. matem. i matem. fiz., 31:6 (1991), 934–939 | MR | Zbl
[13] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR
[14] Morozov A. I., Solovev L. S., “Dvizhenie zaryazhennykh chastits v elektromagnitnykh polyakh”, Vopr. teorii plazmy, 2, Atomizdat, M., 1963, 177–255
[15] Danilkin I. S., “Redutsirovannoe deistvie dlya opisaniya dreifa zaryazhennykh chastits v magnitnom pole”, Fiz. plazmy, 21:9 (1995), 821–826
[16] Braginskii S. I., “K teorii dvizheniya zaryazhennykh chastits v silnom magnitnom pole”, Ukr. matem. zhurnal, 8:2 (1958), 119–126 | MR
[17] Sivukhin D. V., “Dreifovaya teoriya dvizheniya chastitsy v elektromagnitnykh polyakh”, Vopr. teorii plazmy, 1, Atomizdat, M., 1963, 7–97
[18] Stupakov G. V., “Gamiltonova formulirovka dreifovykh uravnenii dvizheniya vo vtorom poryadke”, Pisma v ZhETF, 36:9 (1982), 318–320
[19] Volkov T. F., “Gidrodinamicheskoe opisanie silno razrezhennoi plazmy”, Vopr. teorii plazmy, 4, Atomizdat, M., 1964, 3–19
[20] Volkov B. I., Glasko V. B., Sveshnikov A. G., Semashko N. N., “O peremeshivanii chastits v magnitnoi lovushke s kombinirovannym polem”, Zh. tekhn. fiz., 35:9 (1965), 1590–1593
[21] Buneman O., “Inversion of the Helmholtz (or Laplace–Poisson) operator for slab geometry”, J. Comput. Phys., 12 (1973), 124–130 | DOI
[22] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl
[23] Borodachev L. V., Mingalev I. V., Mingalev O. V., “Optimalnaya normalizatsiya modeli Vlasova–Maksvella”, Vestn. MGU. Ser. 3, 2001, no. 4, 42–45