The experimental analysis of a new adaptive method for a polyhedral approximation of multidimensional convex bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 3, pp. 328-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2003_43_3_a1,
     author = {L. V. Burmistrova},
     title = {The experimental analysis of a new adaptive method for a polyhedral approximation of multidimensional convex bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {328--346},
     year = {2003},
     volume = {43},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a1/}
}
TY  - JOUR
AU  - L. V. Burmistrova
TI  - The experimental analysis of a new adaptive method for a polyhedral approximation of multidimensional convex bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2003
SP  - 328
EP  - 346
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a1/
LA  - ru
ID  - ZVMMF_2003_43_3_a1
ER  - 
%0 Journal Article
%A L. V. Burmistrova
%T The experimental analysis of a new adaptive method for a polyhedral approximation of multidimensional convex bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2003
%P 328-346
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a1/
%G ru
%F ZVMMF_2003_43_3_a1
L. V. Burmistrova. The experimental analysis of a new adaptive method for a polyhedral approximation of multidimensional convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 43 (2003) no. 3, pp. 328-346. http://geodesic.mathdoc.fr/item/ZVMMF_2003_43_3_a1/

[1] Kirillova L. S., “Obschaya zadacha terminalnogo upravleniya v lineinykh sistemakh”, Avtomatika i telemekhan., 1965, no. 12 (26), 2120–2130 | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[3] Lotov A. V., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinoi upravlyaemoi sistemy”, Zh. vychisl. matem. i matem. fiz., 12:3 (1972), 785–788 | MR | Zbl

[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | Zbl

[5] Formalskii A. M., “Postroenie oblasti upravlyaemosti sistem s ogranichennymi resursami upravleniya”, Avtomatika i telemekhan., 1968, no. 3, 21–29 | MR

[6] Chernousko F. L., Otsenivanie fazovykh sostoyanii dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988 | MR

[7] Kurzhanski A. B., Vályi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1996 | MR

[8] Vasilev H. C., “K otyskaniyu globalnogo minimuma kvazivognutoi funktsii”, Zh. vychisl. matem. i matem. fiz., 23:2 (1983), 307–313 | MR

[9] Mukhamediev B. M., “Priblizhennyi metod resheniya zadachi vognutogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 22:3 (1982), 727–732 | MR | Zbl

[10] Sonnevend G., “On optimization of algorithms for function minimization”, Zh. vychisl. matem. i matem. fiz., 17:3 (1977), 591–609 | MR | Zbl

[11] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[12] Samsonov S. P., “Vosstanovlenie vypuklogo mnozhestva po ego opornoi funktsii s zadannoi tochnostyu”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1983, no. 1, 68–71 | MR | Zbl

[13] Sonnevend G., “An optimal sequential algorithm for the uniform approximation of convex functions on $[0, 1]^2$”, Appl. Math. and Optimizat., 10 (1983), 127–142 | DOI | MR | Zbl

[14] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982

[15] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek pri priblizhennykh vychisleniyakh”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl

[16] Vasilev N. S., “O ne uluchshaemykh otsenkakh approksimatsii silno vypuklykh tel”, Vopr. kibernetiki, 136 (1988), 49–56 | MR

[17] Kamenev G. K., Issledovanie iteratsionnykh metodov approksimatsii vypuklykh mnozhestv mnogogrannikami, VTs AN SSSR, M., 1986

[18] Kamenev G. K., Metody approksimatsii vypuklykh tel mnogogrannikami i ikh primenenie dlya postroeniya i analiza obobschennykh mnozhestv dostizhimosti, Dis. ...kand. fiz.-matem. nauk, MFTI, M., 1986, 219 pp.

[19] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[20] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl

[21] Kamenev G. K., “Algoritm sblizhayuschikhsya mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 134–147 | MR | Zbl

[22] Kamenev G. K., “Effektivnye algoritmy approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 446–450 | MR | Zbl

[23] Burmistrova L. V., “Issledovanie novogo metoda approksimatsii vypuklykh kompaktnykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1475–1490 | MR

[24] Burmistrova L. V., Analiz i ispolzovanie adaptivnykh metodov approksimatsii vypuklykh tel mnogogrannikami, Dis. ...kand. fiz.-matem. nauk, VTs RAN, M., 2000, 194 pp.

[25] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR | Zbl

[26] Gruber P. M., Kendrov P., “Approximation of convex bodies by polytopes”, Rendiconti Circolo mat. Palermo. Ser. 2, 31:2 (1982), 195–225 | DOI | MR | Zbl

[27] Schneider R., Wieacker J. A., “Approximation of conves bodies by polytopes”, Bull. London Math. Soc., 13 (2):41 (1981), 149–156 | DOI | MR | Zbl

[28] Bronshtein E. M., Ivanov L. D., “O priblizhenii vypuklykh mnozhestv mnogogrannikami”, Sibirskii matem. zh., 26:5 (1975), 1110–1112

[29] Dudley R., “Metric entropy of some classes of sets with differentiable boundaries”, J. Approximation Theory, 10 (1974), 227–236 | DOI | MR | Zbl

[30] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies. I; II”, Forum. Math., 5 (1993), 281–297 ; 521–538 | DOI | MR | Zbl | MR

[31] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR

[32] Gruber P. M., “Approximation of convex bodies”, Convexity and its Applic., Birkhäuser, Basel, 1983, 131–162 | MR

[33] Kein E., Ekonomicheskaya statistika i ekonometriya, Bibliotechka inostrannykh knig dlya ekonomistov i statistikov, 1, Statistika, M., 1977